首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a crack in a homogeneous material the effect of plastic anisotropy on crack-tip blunting and on the near-tip stress and strain fields is analyzed numerically. The full finite strain analyses are carried out for plane strain under small scale yielding conditions, with purely symmetric mode I loading remote from the crack-tip. In cases where the principal axes of the anisotropy are inclined to the plane of the crack it is found that the plastic zones as well as the stress and strain fields just around the blunted tip of the crack become non-symmetric. In these cases the peak strain on the blunted tip occurs off the center line of the crack, thus indicating that the crack may want to grow in a different direction. When the anisotropic axes are parallel to the crack symmetry is retained, but the plastic zones and the near-tip fields still differ from those predicted by standard isotropic plasticity.  相似文献   

2.
The paper presents a model of damage accumulation designed to analyse fatigue life of structural elements exploited in multiaxial, non-proportional, low-cycle loading conditions. The discussed approach consists of two calculation blocs. In the first bloc the components of stress and strain tensor are determined. This module, in which Mroz’s multisurface model was used, contains constitutive relations and the law of kinematic hardening. The second bloc contains the dependencies which determine the growth of anisotropic measure of damage accumulation (associated with the physical plane) and crack initiation criterion. The growth of the damage accumulation measure was associated with the loading damage accumulation function and the increment of non-dilatational plastic strain on the physical plane. It was assumed that crack initiation occurs when stress or a measure of damage accumulation on any physical plane reaches critical values.  相似文献   

3.
Directionally dependent cracking along the interface of a Cu/Al2O3 bicrystal has been analyzed using continuum mechanics. This work extends previous analyses by considering the elastic anisotropy and plastic deformation of copper. The goals of the analysis are: (1) To provide a possible continuum explanation of the experimentally observed directionally dependent cracking, and (2) to understand the effect of continuum deformation on the competition between dislocation nucleation at a crack tip (i.e., tip blunting and alleviation of the stress concentration) and cleavage. First, the mode mixity of the elastic fields at the crack tip is calculated by considering the traction vector on the interface as derived from anisotropic elasticity. This is compared to the results from isotropic elasticity. The effects of anisotropy, as pertaining to dislocation nucleation and cleavage, are discussed. Elastic-plastic FEM analyses within both the ‘small strain' and finite deformation formulations have been performed for the two crack directions in. Furthermore, a variety of hardening laws, including ideal plasticity, were used to investigate the robustness of the solutions. Comparisons between the FEM analyses show that the general sectorial nature of the crack tip stress fields isthe same for all hardening laws chosen. The effects of geometrical hardening and softening are pronounced in a finite deformation, ideal plasticity analysis. However, even moderate hardening greatly diminishes these effects. If the hardening law saturates, the resulting near tip fields are similar to those of an ideally plastic material. The two crack tip orientations affect the nature of the localization of the plastic deformation. These effects are discussed in the context of different hardening laws. In addition, the interface traction phase angle is changed significantly by the plastic deformation with consequences regarding dislocation nucleation and cleavage. Overall, no clear continuum-based explanation of directionally dependent fracture was found, but it is clear that elastic anisotropy and plastic deformation should, in general, be taken into account. Finally, critical problems encountered in this type of analysis are identified and some directions for future research are suggested.  相似文献   

4.
Crack growth along an interface between a solid with plastic anisotropy and an elastic substrate is modelled by representing the fracture process in terms of a traction-separation law specified on a crack plane. A phenomenological elastic-viscoplastic material model is applied, using one of two different anisotropic yield criteria to account for the plastic anisotropy. Conditions of small-scale yielding are assumed, and due to the mismatch of elastic properties across the interface the corresponding oscillating stress singularity field is applied as boundary conditions on the outer edge of the region analyzed. Crack growth resistance curves are calculated numerically, and based on these results the dependence of the steady-state fracture toughness on the near-tip mode mixity is determined. Different initial orientations of the principal axes relative to the interface are considered and it is found that the steady-state fracture toughness is quite sensitive to this orientation of the anisotropy.  相似文献   

5.
In this work, the crack tip strain localization in a face centered cubic single crystal subject to both monotonic and cyclic loading was investigated. The effect of constraint was implemented using T-stress and strain accumulation was studied for both isotropic and anisotropic elastic cases with the appropriate application of remote displacement fields in plane strain. Modified boundary layer simulations were performed using the crystal plasticity finite element framework. The consideration of elastic anisotropy amplified the effect of constraint level on stress and plastic strain fields near the crack tip indicating the importance of its use in fracture simulations. In addition, to understand the cyclic stress and strain behavior in the vicinity of the crack tip, combined isotropic and kinematic hardening laws were incorporated, and their effect on the evolution of yield curves and plastic strain accumulation were investigated. With zero-tension cyclic load, the evolution of plastic strain and Kirchhoff stress components showed differences in magnitudes between isotropic and anisotropic elastic cases. Furthermore, under cyclic loading, ratcheting was observed along the localized slip bands, which was shown to be affected by T-stress as well as elastic anisotropy. Negative T-stress increased the accumulation of plastic strain with number of cycles, which was further amplified in the case of elastic anisotropy. Finally, in all the cyclic loading simulations, the plastic strain accumulation was higher near the \(55^0 \) slip band.  相似文献   

6.
Crack growth in a solid with plastic anisotropy is modeled by representing the fracture process in terms of a traction-separation law specified on the crack plane, and crack growth resistance curves are calculated numerically. A phenomenological elastic-viscoplastic material model is applied, using one of two different anisotropic yield criteria to account for the plastic anisotropy. The analyses are carried out for conditions of small scale yielding, with mode I loading conditions far from the crack-tip. Different initial orientations of the principal axes relative to the crack plane are considered and it is found that the steady-state fracture toughness is quite sensitive to the type of anisotropy and to the angle of inclination of the principal axes relative to the crack plane.  相似文献   

7.
Plastic anisotropy is a typical property of many metals and it can have a significant effect of the limit load of structures. It is therefore of importance to evaluate this effect for typical geometries covered by compendia of flaw assessment procedures for limit load solutions. The present paper deals with a typical highly undermatched specimen in pure bending. It is assumed that the mismatch factor (the ratio of the yield stress of weld material to the yield stress of base material) is so small that plastic deformation solely occurs in the weld whereas the base material is elastic (rigid). The weld material obeys Hill’s quadratic orthotropic yield criterion. The variation of the upper bound bending moment with the thickness of the weld and anisotropic properties of the material is illustrated. Comparison with the isotropic case made shows that an effect of plastic anisotropy can be quite large.  相似文献   

8.
In this paper, modes I and II crack tip fields in polycrystalline plastic solids are studied under plane strain, small scale yielding conditions. Two different initial textures of an Al-Mg alloy, viz., continuous cast AA5754 sheets in the recrystallized and cold rolled conditions, are considered. The former is nearly-isotropic, while the latter displays distinct anisotropy. Finite element simulations are performed by employing crystal plasticity constitutive equations along with a Taylor-type homogenization as well as by using the Hill quadratic yield theory. It is found that significant texture evolution occurs close to the notch tip which profoundly influences the stress and plastic strain distributions. Also, the cold rolling texture gives rise to higher magnitude of plastic strain near the tip.  相似文献   

9.
A model is developed for quantifying the size effect due to heterogeneity and anisotropy in polycrystalline films. The Monte Carlo finite element calculations predict the average and standard deviation of the microscopic (local) stress intensity factors and energy release rate of a crack in a columnar aggregate of randomly orientated, perfectly bonded, orthotropic crystals (grains) under plane deformation. The boundary of the near-tip region is subjected to displacement boundary conditions associated with a macroscopic (far field or nominal) Mode-I stress intensity factor and average elastic constants calculated for the uncracked film with a large number of grains. The average and standard deviation of the microscopic stress intensity factors and energy release rate, normalized with respect to the macroscopic parameters, are presented as functions of the number of grains within the near-tip region, and the parameters that quantify the level of crystalline anisotropy. It is shown that for a given level of anisotropy, as long as the crack tip is surrounded by at least ten grains, then the expected value and standard deviation of the crack tip parameters are insensitive to the number of crystals. For selected values of crystalline anisotropy, the probability distributions of Mode-I stress intensity factor and stress ahead of the crack are also presented. The results suggest that the size effect due to heterogeneity and anisotropy is weak; crack initiation load and direction are governed only by the details of the grains in the immediate vicinity of the crack tip. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The level of plasticity induced crack closure (PICC) is greatly affected by stress state. Under plane strain conditions, however, the level and even the existence of PICC still are controversial. The objective here is to study the influence of the main numerical parameters on plane strain PICC, namely the total crack propagation, the number of load cycles between crack increments, the finite element mesh and the parameter used to quantify PICC. The PICC predictions were included in a parallel numerical study of crack propagation, in order to quantify the impact of plane strain values on fatigue life. The results indicate that literature may be overestimating plane strain PICC due to incorrect numerical parameters. The number of load cycles usually considered is unrealistically small, and its increase was found to vanish crack closure, particularly for kinematic hardening. This effect was linked to the ratcheting effect observed at the crack tip. The total crack increment, Δa, must be large enough to obtain stabilized PICC values, but this may imply a huge numerical effort particularly for 3D models. The size of crack tip plastic zone may be overestimated in literature, which means that the meshes used may be too large. Additionally, the crack propagation study showed that the plane strain PICC has usually a dominant effect on fatigue life, and plane stress PICC is only relevant for relatively thin geometries.  相似文献   

11.
A mechanical explanation of plasticity-induced crack closure under plain strain conditions is given first by means of dislocation mechanics and then by the methods of continuum mechanics. In plane strain, the event of crack closure is due to transport of material from the wake to the crack tip. It is an elastic effect caused by the response of the matrix surrounding the plastic wake. The transported material produces a wedge which follows the crack tip, and unlike the plane stress condition it does not leave a remaining layer on the crack flanks. The length of the produced wedge at the crack tip is of the same scale as the plastic zone. It is then shown that in spite of its smallness this wedge is able to cause the experimentally observed shielding effect. The results also suggest that the discrepancies concerning the interpretation of fatigue crack growth and closure experiments are likely to be due to differences in accuracy in the detection of such small but nevertheless effective wedges.  相似文献   

12.
Directional crack growth criteria in compressed elastic–plastic materials are considered. The conditions at the crack tip are evaluated for a straight stationary crack. Remote load is a combined hydrostatic stress and pure shear, applied via a boundary layer assuming small scale yielding. Strains and deformations are assumed to be small. Different candidates for crack path criteria are examined. Maximum non-negative hoop stress to judge the risk of mode I and maximum shear stress for mode II extension of the crack are examined in some detail. Crack surfaces in contact are assumed to develop Coulumb friction from the very beginning. Hence, a condition of slip occurs throughout the crack faces. The plane in which the crack extends is calculated using a finite element method. Slip-line solutions are derived for comparison with the numerically computed asymptotic field. An excellent agreement between numerical and analytical solutions is found. The agreement is good in the region from the crack tip to around halfway to the elastic–plastic boundary. The relation between friction stress and yield stress is varied. The crack is found to extend in a direction straight ahead in shear mode for sufficiently high compressive pressure. At a limit pressure a kink is formed at a finite angle to the crack plane. For lower pressures the crack extends via a kink forming an angle to the parent crack plane that increases with decreasing pressure.  相似文献   

13.
A mixed hardening model has been implemented based on Lemaitre and Chaboche non-linear kinematic hardening theory to consider cyclic behavior and the Bauschinger effect. The Chaboche isotropic hardening theory is incorporated into the non-linear kinematic hardening model to introduce a surface of nonhardening in the plastic strain space. The bending and reverse bending case study has verified the effectiveness of the mixed hardening model by comparison with the proposed experiment results. Barlat’89 yielding criterion is adopted for it does not has any limitation while Hill’s non-quadratic yield criterion is for the case that the principal axes of anisotropy coincides with principal stress direction. The Backward–Euler return mapping algorithm was applied to calculate the stress and strain increment. The mixed hardening model is implemented using ABAQUS user subroutine (UMAT). The comparisons with linear kinematic hardening model and isotropic hardening model in NUMISHEET’93 benchmark show that the mixed hardening model coupled with Barlat’89 yield criteria can well reflect stress and strain distributions and give a more favorable springback angle prediction.  相似文献   

14.
An elastic-plastic analysis is performed for two problems relevant to fracture mechanics: a semiinfinite body with an edge crack in a far out-of-plane shearing field and an infinite plate under plane stress conditions containing a finite line crack in a remote tensile field. Amplitudes of the dominant singularity in the plastic region at the crack tip, the plastic stress and strain intensity factors, are calculated for applied stress levels approaching the yield stress. A technique is developed for using the dominant singular solution in conjunction with the finite element method to make accurate calculations for the near-tip fields. Additionally, a comparative study of deformation theory with flow theory is performed for cracks in an anti-plane shear field. Elastic fracture mechanics is extended to high levels of applied stress for which the plastic zone is no longer small compared to the crack length by relating the critical stress for fracture initiation to the plastic intensity factors.  相似文献   

15.
Structural parts used in boilers, turbines, ships, and many household purposes are manufactured through sheet metal forming processes. During manufacturing, the micro structure of the material is deformed and micro cracks along with anisotropic properties get induced. Present research deals with a thin sheet metal plate containing a central crack subjected to mixed mode (I+II) loading. With special reference to Lankford's coefficient and degree of anisotropy, the effect of anisotropic triaxiality on crack initiation angle has been investigated. The result reveals the combinations of Lankford's coefficient and degree of anisotropy for which crack initiation angle do not change.  相似文献   

16.
Asymptotic crack-tip fields including the effect of transverse shear deformation in an anisotropic shell are presented. The material anisotropy is defined here as a monoclinic material with a plane symmetry at x 3=0. In general, the shell geometry near the local crack tip region can be considered as a shallow shell. Based on Reissner shallow shell theory, an asymptotic analysis is conducted in this local area. It can be verified that, up to the second order of the crack tip fields in anisotropic shells, the governing equations for bending, transverse shear and membrane deformation are mutually uncoupled. The forms of the solution for the first two terms are identical to those given by respectively the plane stress deformation and the antiplane deformation of anisotropic elasticity. Thus Stroh formalism can be used to characterize the crack tip fields in shells up to the second term and the energy release rate can be expressed in a very compact form in terms of stress intensity factors and Barnett–Lothe tensor L. The first two order terms of the crack-tip stress and displacement fields are derived. Several methods are proposed to determine the stress intensity factors and `T-stresses'. Three numerical examples of two circular cylindrical panels and a circular cylinder under symmetrical loading have demonstrated the validity of the approach.  相似文献   

17.
In this project the initiation and propagation of short fatigue cracks in the metastable β‐titanium alloy TIMETAL®LCB is investigated. By means of an interferometric strain/displacement gauge system (ISDG) to measure the crack opening displacement (COD) and the electron back scattered diffraction technique (EBSD) to determine the orientation of individual grains the microstructural influence on short crack initiation and growth can be characterized. Finite element calculations show a high influence of the elastic anisotropy on the initiation sites of cracks. Crack propagation takes place transgranulary along slip planes as well as intergranulary along grain boundaries. The crack growth rate depends strongly on the active mechanism at the crack tip which in turn is influenced by crack length, the applied stress and the orientation of the grains involved. The value of the steady state crack closure stress changes from a positive value at low applied stresses (roughness induced) to a negative one at higher applied stresses (due to plastic deformations at the crack tip). The crack growth simulation is realised by a two‐dimensional boundary element technique, which contains the ideas of Navarro und de los Rios. The model includes the sequence of the applied stress amplitude as well as the experimental measured roughness induced crack closure.  相似文献   

18.
This paper presents the development of a finite element analysis based on an anisotropic model of continuum damage mechanics theory proposed recently by the authors for ductile fracture under non-proportional loading. The condition of non-proportional loading is formulated by introducing a dynamic co-ordinate system of principal damage allowing the principal direction of damage during the loading to rotate accordingly. The finite element analysis developed under non-proportional loading is applied to predict the crack initiation load of a centre-cracked plate under uniform loading. The predicted load agrees satisfactorily with those determined experimentally with centre-cracked thin plates made of aluminium alloy 2024-T3. The analysis also reveals under non-proportional loading the hysteresis effect of the principal directions of damage and stress. In addition, the influence of varying anisotropic damage coefficients on the crack initiation load and the crack tip displacement profile is also examined. The larger the degree of the anisotropy, the higher the crack initiation load. The magnitude of the crack tip displacement profile is found to be proportional to the degree of material anisotropy.  相似文献   

19.
This paper is centred on the role of the T-stress during mode I fatigue crack growth. The effect of a T-stress is studied through its effect on plastic blunting at crack tip. As a matter of fact, fatigue crack growth is characterized by the presence of striations on the fracture surface, which implies that the crack grows by a mechanism of plastic blunting and re-sharpening (Laird C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation. In: Fatigue crack propagation, STP 415. Philadelphia: ASTM; 1967. p. 131–68 [8]). In the present study, plastic blunting at crack tip is a global variable ρ, which is calculated using the finite element method. ρ is defined as the average value of the permanent displacement of the crack faces over the whole K-dominance area. The presence of a T-stress modifies significantly the evolution of plastic deformation within the crack tip plastic zone as a consequence of plastic blunting at crack tip. A yield stress intensity factor KY is defined for the cracked structure, as the stress intensity factor for which plastic blunting at crack tip exceeds a given value. The variation of the yield stress intensity factor was studied as a function of the T-stress. It is found that the T-stress modifies significantly the yield point of the cracked structure and that the yield surface in a (T, KI) plane is independent of the crack length. Finally, a yield criterion is proposed for the cracked structure. This criterion is an extent of the Von-Mises yield criterion to the problem of the cracked structure. The proposed criterion matches almost perfectly the results obtained from the FEM. The evolution of the yield surface of the cracked structure in a (T, KI) plane was also studied for a few loading schemes. These results should develop a plasticity model for the cracked structure taking into account the effect of the T-stress.  相似文献   

20.
Quantifying crack tip displacement fields with DIC   总被引:4,自引:0,他引:4  
Crack paths under both fatigue and fracture conditions are governed by the crack tip displacement field and the material deformation characteristics, including those influenced by metallurgical anisotropy. Experimental techniques such as thermoelasticity and photoelasticity have been successfully used to characterise the elastic stress fields around cracks but they do not take into account either plasticity or anisotropy. Considerable work has been carried out to characterise crack tip stress fields from displacement measurements. The current method of choice for obtaining displacement field data is digital image correlation (DIC) which has undergone significant advances in the recent years. The ease of use and capabilities of the technique for full field displacements has led to improved methods for characterising crack tip displacement fields based on data obtained from DIC. This paper gives an overview of some of the applications of DIC for crack tip characterisation such as K, T-stress and crack tip opening angle (CTOA) measurements as well as data obtained from 3D measurements of a propagating crack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号