首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Failure behaviour of honeycomb sandwich corner joints and inserts   总被引:1,自引:0,他引:1  
In nearly all sandwich constructions certain types of joints have to be used for assembly, but little is known about their failure behaviour. This paper deals with the investigation of the mechanical behaviour of three different corner joints as a right-angled connection of two sandwich panels and of two different potted inserts as a localised load introduction in Nomex® honeycomb sandwich structures with glass fibre-reinforced composite skins. For this purpose, experimental test series were conducted including shear tests and bending tests of the corner joints and pull-out as well as shear-out tests of the threaded inserts. The failure mechanisms and sequences are described for each load case and the influence of the different designs and of the loading rate is discussed. Based on these characteristics, finite element simulation models were developed in LS-DYNA, which are able to represent the respective failure behaviours.  相似文献   

2.
A micromechanics damage model is presented which examines the effect of fibre-matrix debonding and thermal residual stress on the transverse damage behaviour of a unidirectional carbon fibre reinforced epoxy composite. It is found that for a weak fibre-matrix interface, the presence of thermal residual stress can induce damage prior to mechanical loading. However, for a strong fibre-matrix interface the presence of thermal residual stress is effective in suppressing fibre-matrix debonding and improving overall transverse strength by approximately 7%. The micromechanical model is subjected to a multiple loading cycle (i.e. tension-compression-tension), where it is shown to provide novel insight into the microscopic damage accumulation that forms prior to ultimate failure, clearly highlighting the different roles that fibre-matrix debonding and matrix plasticity play in forming the macroscopic response of the composite. Such information is vital to the development of accurate continuum damage models, which often smear these effects using non-physical material parameters.  相似文献   

3.
A process model was developed for the honeycomb core pressure during sandwich panel manufacturing. The model predicted the inflow of moisture from the cell walls into the cell void space using by Fick’s law, and the outflow of moist air through the bag-side skin was governed by Darcy’s law. The model required the core moisture content and honeycomb skin through-thickness air permeability to be experimentally measured. A partially saturated out-of-autoclave woven prepreg was used as the skin material in this study. In-order to accurately apply Darcy’s law during elevated temperature processing, an incremental temperature measurement technique was proposed to maintain constant skin thickness during air permeability characterization. Micro-CT imaging was performed on cure quenched samples to confirm that the proposed characterization technique maintained the impregnation dynamics of the target cure cycle. Model predictions using the characterized material properties are compared to in-situ core pressure measurements in Part II.  相似文献   

4.
In this study the perforation of composite sandwich structures subjected to high-velocity impact was analysed. Sandwich panels with carbon/epoxy skins and an aluminium honeycomb core were modelled by a three-dimensional finite element model implemented in ABAQUS/Explicit. The model was validated with experimental tests by comparing numerical and experimental residual velocity, ballistic limit, and contact time. By this model the influence of the components on the behaviour of the sandwich panel under impact load was evaluated; also, the contribution of the failure mechanisms to the energy-absorption of the projectile kinetic energy was determined.  相似文献   

5.
A multi-site micromechanical modelling of the effective thermo-elastic properties of heterogeneous materials is derived from the proposed thermo-elastic integral equation. The fundamental solution based on the Green function of elasticity problem is used to derive a general expression of elastic and thermal strain concentration tensors. This approach enables the development of specific models such as multi-site Mori–Tanaka, self-consistent or generalized self-consistent schemes. The main advantage of the model resides in its capability to take into account the morphology as well as the topology of composites’ reinforcements. Sensitivity of the model predictions to some parameters has been analysed using the Generalized Mori–Tanaka (GMT) approximation. Its predictions have been compared to previous investigations to underline the effect of morphology and topology of reinforcements on the anisotropy of the global material properties.  相似文献   

6.
Dynamic crushing strength of hexagonal honeycombs   总被引:3,自引:0,他引:3  
Based on the repeatable collapsing mechanism of cells’ structure under dynamic crushing, an analytical formula of the dynamic crushing strength of regular hexagonal honeycombs is derived in terms of impact velocity and cell walls’ thickness ratio. It is consistent with the equation obtained from the shock wave theory that regards cellular material as continuum, in which the key parameter is approximately measured from the “stress–strain” curve of the cellular material. The effect of unequal thickness of cell walls on the honeycomb's dynamic crushing strength is discussed, and the result shows that the dynamic crushing strength of the hexagonal honeycomb with some double-thickness walls is about 1.3 times of that of the hexagonal honeycomb without double-thickness wall. All of the analytical predictions are compared with the numerical simulation results, showing good agreements.  相似文献   

7.
A novel honeycomb core made of a natural-fiber reinforced composite consisting of a vinylester matrix reinforced with jute fabric is introduced. Six-mm- and 10-mm-cell honeycombs are manufactured using two compression-molding techniques. Best results are obtained for the mold with lateral compression. Experimental tests are conducted to characterize the elastic response of the composite and the core response under flatwise compression. The effective elastic properties of the core are computed via a homogenization analysis and finite element modeling. The results of the homogenization analysis are in very good agreement with estimations done using analytical formulas from the bibliography. The flatwise compression tests show that the core failure mechanisms are yarn pull-out and fiber breaking. The large wall thickness relative to the cell size of the jute–vinylester cores, which inhibits buckling, and the heterogeneities in the composite, which are preferential damage initiation sites, explain the observed behavior. When compared in terms of the specific strengths, the jute/vinylester cores introduced in this work show similar performances to those of their commercially available counterparts. The results from this study suggest that jute-reinforced cores have the potential to be an alternative to standard cores in applications that sustain compressive static loads.  相似文献   

8.
This paper investigates the compression properties of square and triangular honeycomb core materials based on co-mingled flax fibre reinforced polypropylene (PP) and polylactide (PLA) polymers. Initial testing focused on investigating the sensitivity of the tensile properties of the composites to variations in processing conditions. Following this, a range of triangular and square honeycomb structures were manufactured using a simple slotting technique. These structures were tested in compression at quasi-static rates of strain and their strength and specific energy absorption characteristics were determined. Finally, a finite element analysis was undertaken to accurately predict the strength, energy-absorbing characteristics, buckling behaviour and failure modes of these natural fibre based core materials.  相似文献   

9.
This paper reports on an investigation into the behaviour of circular sandwich panels with aluminium honeycomb cores subjected to air blast loading. Explosive tests were performed on sandwich panels consisting of mild steel face plates and aluminium honeycomb cores. The loading was generated by detonating plastic explosives at a pre-determined stand-off distance. Core height and face plate thickness were varied and the results are compared with previous experiments. It was observed that the panels exhibited permanent face plate deflection and tearing, and the honeycomb core exhibited crushing and densification. It was found that increasing the core thickness delayed the onset of core densification and decreased back plate deflection. Increasing the plate thickness was also found to decrease back plate deflection, although the panels then had a substantially higher overall mass.  相似文献   

10.
In this study, a novel broadband microwave-absorbing honeycomb structure is designed using a new concept and is fabricated. To efficiently improve the absorbing performance, the proposed novel design concept uses the transverse direction of a honeycomb structure made out of a lossy material. In that the honeycomb structure can be used in the transverse to the ribbon direction, the effective thickness in terms of the incident EM waves becomes very large, resulting in the enhancement of absorption bandwidth. The designed absorbing honeycomb structure was fabricated using glass/epoxy-MWCNT prepregs and the autoclave process. The measured absorbing performance of the fabricated absorbing honeycomb structure using a free-space measurement system satisfied −10 dB absorption from 3 GHz to 16 GHz. When the performance of the absorbing honeycomb structure is considered in terms of the absorbing bandwidth, because most tracking radars use the C band and/or the X band due to their resolutions, the verified return loss of the absorbing honeycomb structure was found to be superior. It was shown that a lightweight and broadband absorber could be implemented without the use of a magnetic material and without limitations on the thickness.  相似文献   

11.
Chiral honeycombs are one of the most important and oft studied classes of auxetic systems due to their vast number of potential applications which range from stent geometries to composites, sensors and satellite components. Despite numerous works on these systems, however, relatively few studies have investigated the effect of structural disorder on these structures. In view of this, in this study, the effect of translational disorder on hexachiral honeycombs were investigated through a Finite Element approach. It was found that this type of disorder has minimal effect on the Poisson's ratios of these systems provided that the ligament length to thickness ratio remains sufficiently large and the overall length to width ratio of the disordered system does not differ considerably from that of its ordered counterpart. This makes it ideal for use in various applications and products such as sandwich composites with an auxetic core.  相似文献   

12.
13.
The development of cracks due to the effect of fluid pressure is a problem that concerns many areas of engineering, ranging from structural to geotechnical or petroleum. Within the context of the Finite Element Method, the authors have recently proposed a formulation for the coupled hydro-mechanical behaviour of zero-thickness interface elements. This formulation has been verified for pre-existing discontinuities (e.g. natural joints, faults in rock). In this paper, the above formulation, complemented with an appropriate fracture mechanics-based constitutive model, is applied to developing cracks in plain concrete. The numerical results are compared with a series of wedge splitting tests available in the literature, performed on concrete specimens under the influence of fluid pressure at the notch and along the propagating crack. A good agreement is obtained in terms of wedge-splitting force vs. crack mouth opening displacement (CMOD), crack and fluid fronts vs. CMOD, and fluid pressure along the crack vs. time. The influence of splitting rate and input fluid pressure is also systematically analyzed.  相似文献   

14.
Mechanical properties of Nomex honeycomb core are governed by not only its global dimensions, cell topology, material properties and proportion of the aramid paper and phenolic resin, but also possible manufacturing imperfections, such as the debonding between the two aramid paper sheets in the double cell wall. To account for the layered feature of the cell walls and the bonding conditions between aramid paper sheets, a three-dimensional unit cell model was proposed and developed in this study. The aramid paper sheets, the phenolic resin coating, the adhesive between the aramid paper sheets, and their bonding relationships were all explicitly modelled in accordance with their actual geometry and material parameters. The model was validated by comparing the predicted load-displacement curves and failure modes with the test results. The effects of representative bonding imperfections on both the collapse load and the related displacement of the honeycomb core under flatwise compression were evaluated. Through the analyses, it was found that the debonding imperfections have significant effects on the mechanical behaviour of the honeycomb core and that with the same debonding area the debonding at the outside edge of the adhesive printing line is the most critical. It was also found that debonding fracture may occur if adhesive is not strong enough or the debonding imperfection area is large.  相似文献   

15.
Mechanical properties and failure modes of carbon fiber composite egg and pyramidal honeycombs cores under in plane compression were studied in the present paper. An interlocking method was developed for both kinds of three-dimensional honeycombs. Euler or core shear macro-buckling, face wrinkling, face inter-cell buckling, core member crushing and face sheet crushing were considered and theoretical relationships for predicting the failure load associated with each mode were presented. Failure mechanism maps were constructed to predict the failure of these composite sandwich panels subjected to in-plane compression. The response of the sandwich panels under axial compression was measured up to failure. The measured peak loads obtained in the experiments showed a good agreement with the analytical predictions. The finite element method was used to investigate the Euler buckling of sandwich beams made with two different honeycomb cores and the comparisons between two kinds of honeycomb cores were conducted.  相似文献   

16.
Numerous commercial and military aircraft, including the Canadian Forces CF188 Hornet, use composite honeycomb structures in the design of their flight control surfaces (FCS). These structures provide excellent strength to weight ratios, but are often susceptible to degradation from moisture ingress. Once inside the honeycomb structure moisture causes the structural adhesive bonds to weaken, which can lead to complete failure of the FCS in flight. There are two critical structural adhesive bonds: the node bond and the filet bond. The node bond is integral to the honeycomb portion of the composite core and is located between the honeycomb cells. The filet bond is the adhesive bond located between the skin and the core. In order to asses overall structural degradation and develop repair procedures, it is important to determine the degree of degradation in each type of bond. Neutron radiography and tomography of the adhesive bonds was conducted at the Royal Military College (RMC) and FRM-II. Honeycomb samples were manufactured from FCS with in-service water ingress. The radiographs and tomograms provided important information about the degree of degradation in the core as well as about which adhesive bonds are more susceptible. The information obtained from this study will help to develop repair techniques and assess the flight worthiness of FCS.  相似文献   

17.
18.
The effect of laser-hybrid welds on deformation and failure behaviour of fracture mechanics specimens is investigated in order to provide quantitative prediction of damage tolerance and residual strength. The simulation of crack initiation and crack extension in hybrid welds is performed by applying GTN damage model. The identification of damage parameters requires combined numerical and experimental analyses. The tendency to crack path deviation during crack growth depends strongly on the constraint development at the interface between base and weld metal. In order to quantify the influence of local stress state on the crack path deviation, the initial crack location is varied. Finally, the results from fracture mechanics tests are compared to real component, beam-column-connection, with respect to fracture resistance.  相似文献   

19.
Impact behavior and energy absorption of paper honeycomb sandwich panels   总被引:11,自引:0,他引:11  
Dynamic cushioning tests were conducted by free drop and shock absorption principle. The effect of paper honeycomb structure factors on the impact behavior was analyzed. Results of many experiments show that the dynamic impact curve of paper honeycomb sandwich panel is concave and upward; the thickness and length of honeycomb cell-wall have a great effect on its cushioning properties; increasing the relative density of paper honeycomb can improve the energy absorption ability of the sandwich panels; the thickness of paper honeycomb core has an up and down fluctuant effect on the cushioning properties; with the increase of the thickness of paper honeycomb core, the effect dies down; flexible corrugated paperboard as liners can improve the compression resistance and cushioning properties of paper honeycombs. The research results can be used to optimize the structure design of paper honeycomb sandwich panel and material selection for packaging design.  相似文献   

20.
The transverse shear mechanical behavior and failure mechanism of aluminum alloy honeycomb cores are investigated by the single block shear test in this paper. The transverse shear deformation process of honeycomb cores may be approximately categorized into four stages, namely elastic deformation, plastic deformation, fracture of cell walls and debonding of honeycomb cores/facesheets. The elastic deformation of unit cell under transverse shear displacement is also investigated by the finite element method, and the result shows that the bending deformation of the cell walls is similar to that of the cantilever beam. In order to precisely predict the equivalent transverse shear modulus and strength, not only shear deformation but also bending deformation of cell walls should be considered. Therefore, in the present paper, the equivalent transverse shear modulus and strength are predicted by application of the cantilever beam theory and thin plate shear buckling theory in conjunction with simplifying assumption as to the displacement in the cores. It is concluded that the contribution of bending deformation of cell walls to equivalent transverse shear modulus and strength is obvious with the decreasing height of cell walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号