首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new proton conducting membrane containing room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium trifluoromethanesulfonylimide (DMOImTFSI) and polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) has been developed in the present work. The addition of bis(trifluoromethanesulphonyl)imide (HN(CF3SO2)2) to this membrane results in an increase in conductivity by one order of magnitude at 25 °C. The membrane shows a conductivity of 2.74 × 10−3 S/cm at 130 °C along with good mechanical stability. The membrane was tested in a commercial fuel cell test station at 100 °C with dry hydrogen and oxygen gas reactants using Pt/C electrodes. The membrane containing the ionic liquid has been found to be electroactive for hydrogen oxidation and oxygen reduction at the platinum electrode and can be developed for use in proton exchange membrane fuel cell (PEMFC) under non-humid conditions at elevated temperatures.  相似文献   

2.
A polyterthiophene (PTTh)/multi-walled carbon nanotube (CNT) composite was synthesised by in situ chemical polymerisation and used as an active cathode material in lithium cells assembled with an ionic liquid (IL) or conventional liquid electrolyte, LiBF4/EC-DMC-DEC. The IL electrolyte consisted of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) containing LiBF4 and a small amount of vinylene carbonate (VC). The lithium cells were characterised by cyclic voltammetry (CV) and galvanostatic charge/discharge cycling. The specific capacity of the cells with IL and conventional liquid electrolytes after the 1st cycle was 50 and 47 mAh g−1 (based on PTTh weight), respectively at the C/5 rate. The capacity retention after the 100th cycle was 78% and 53%, respectively. The lithium cell assembled with a PTTh/CNT composite cathode and a non-flammable IL electrolyte exhibited a mean discharge voltage of 3.8 V vs Li+/Li and is a promising candidate for high-voltage power sources with enhanced safety.  相似文献   

3.
Polybenzimidazole (PBI)/ionic liquid (IL) composite membranes were prepared from an organosoluble, fluorine-containing PBI with ionic liquid, 1-hexyl-3-methylimidazolium tri?uoromethanesulfonate (HMI-Tf). PBI/HMI-Tf composite membranes with different HMI-Tf concentrations have been prepared. The ionic conductivity of the PBI/HMI-Tf composite membranes increased with both the temperature and the HMI-Tf content. The composite membranes achieve high ionic conductivity (1.6 × 10−2 S/cm) at 250 °C under anhydrous conditions. Although the addition of HMI-Tf resulted in a slight decrease in the methanol barrier ability and mechanical properties of the PBI membranes, the PBI/HMI-Tf composite membranes have demonstrated high thermal stability up to 300 °C, which is attractive for high-temperature (>200 °C) polymer electrolyte membrane fuel cells.  相似文献   

4.
Lithium vanadium fluorophosphate, LiVPO4F, was utilized as both cathode and anode for fabrication of a symmetric lithium-ion LiVPO4F//LiVPO4F cell. The electrochemical evolution of the LiVPO4F//LiVPO4F cell with the commonly used organic electrolyte LiPF6/EC-DMC has shown that this cell works as a secondary battery, but exhibits poor durability at room temperature and absolutely does not work at increased operating temperatures. To improve the performance and safety of this symmetric battery, we substituted a non-flammable ionic liquid (IL) LiBF4/EMIBF4 electrolyte for the organic electrolyte. The symmetric battery using the IL electrolyte was examined galvanostatically at different rates and operating temperatures within the voltage range of 0.01–2.8 V. It was demonstrated that the IL-based symmetric cell worked as a secondary battery with a Coulombic efficiency of 77% at 0.1 mA cm−2 and 25 °C. It was also found that the use of the IL electrolyte instead of the organic one resulted in the general reduction of the first discharge capacity by about 20–25% but provided much more stable behavior and a longer cycle life. Moreover, an increase of the discharge capacity of the IL-based symmetric battery up to 120 mA h g−1 was observed when the operating temperature was increased up to 80 °C at 0.1 mA cm−2. The obtained electrochemical behavior of both symmetric batteries was confirmed by complex-impedance measurements at different temperatures and cycling states. The thermal stability of LiVPO4F with both the IL and organic electrolytes was also examined.  相似文献   

5.
In a common salt-in-polymer electrolyte, a polymer which has polar groups in the molecular chain is necessary because the polar groups dissolve lithium salt and coordinate cations. Based on the above point of view, polystyrene [PS] that has nonpolar groups is not suitable for the polymer matrix. However, in this PS-based composite polymer-in-salt system, the transport of cations is not by segmental motion but by ion-hopping through a lithium percolation path made of high content lithium salt. Moreover, Al2O3 can dissolve salt, instead of polar groups of polymer matrix, by the Lewis acid-base interactions between the surface group of Al2O3 and salt. Notably, the maximum enhancement of ionic conductivity is found in acidic Al2O3 compared with neutral and basic Al2O3 arising from the increase of free ion fraction by dissociation of salt. It was revealed that PS-Al2O3 composite solid polymer electrolyte containing 70 wt.% salt and 10 wt.% acidic Al2O3 showed the highest ionic conductivity of 9.78 × 10-5 Scm-1 at room temperature.  相似文献   

6.
This paper focused on the transport studies of PVA-chitosan blended electrolyte system and application in proton batteries. The electrolytes were prepared by the solution cast technique. In this work, 36 wt.% PVA and 24 wt.% chitosan blend doped with 40 wt.% NH4NO3 exhibited the highest room temperature conductivity. The conductivity value obtained was 2.07 × 10−5 S cm−1. EC was then added in various quantities to the 60 wt.% [60 wt.% PVA-40 wt.% chitosan]-40 wt.% NH4NO3 composition in order to enhance the conductivity of the sample. The highest conductivity obtained was 1.60 × 10−3 S cm−1 for the sample containing 70 wt.% EC. The Rice and Roth model was applied to analyze the conductivity enhancement. The highest conducting sample in the plasticized system was used to fabricate several batteries with configuration Zn//MnO2. The open circuit potential (OCP) of the fabricated batteries was between 1.6 and 1.7 V.  相似文献   

7.
LiMn2O4 was examined as a cathode material for lithium-ion batteries, working together with a room temperature ionic liquid electrolyte, obtained by dissolution of solid lithium bis(trifluoromethanesulfonyl)imide (LiNTf2) in liquid N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (MePrPipNTf2), with the formation of a liquid LiNTf2-MePrPipNTf2 system. The Li/LiMn2O4 cell was tested by galvanostatic charging/discharging and by impedance spectroscopy. The LiMn2O4 cathode showed good cyclability and Coulombic efficiency in the presence of 10 wt.% of vinylene carbonate (VC) as an additive to the ionic liquid. The flash point of the LiNTf2-MePrPipNTf2-VC(10%) electrolyte was estimated to be above 300 °C.  相似文献   

8.
Room temperature ionic liquids (RTILs) with high safety characteristic usually have high viscosity and melting point, which is adverse for the application of RTIL-based electrolytes in Li-ion batteries. In this investigation, a promising RTIL, i.e. PP13TFSI consisting of N-methyl-N-propylpiperidinium (PP13) cation and bis(trifluoromethanesulfonyl)imide (TFSI) anion is synthesized. The effect of the content of Li salt in the electrolytes containing PP13TFSI and LiTFSI on the ionic conductivity and cell performance is investigated. The electrolyte of 0.3 mol kg−1 LiTFSI/PP13TFSI is recommended for its higher lithium transference number and discharge capacity in the LiCoO2/Li cell than other electrolytes. In addition, it is found that, by introducing 20% diethyl carbonate (DEC) as a co-solvent into pure RTIL electrolyte, the rate capability and low-temperature performance of the LiCoO2/Li cells are improved obviously, without sacrificing its safety characteristics. It suggests that a component with low viscosity and melting point, i.e. DEC, is necessary to effectively overcome the shortcomings of RTIL for the application in Li-ion batteries.  相似文献   

9.
The optimized composition of PVdF-co-HFP-LiAlO2 based micro-porous nano-composite polymer electrolyte membranes (MPNCPEMs) was prepared with a preferential polymer dissolution process. Nitrogen adsorption isotherms and SEM micrographs showed that the enhanced ionic conductivity of polymer electrolyte was due to increase in pore-size, surface area and pore density, results an increase in the electrolyte uptake. The ac-impedance spectroscopy showed that the room temperature ionic conductivity of PVdF-co-HFP-LiAlO2 based polymer electrolyte membranes increased with the removal of PVA content and attained the maximum ionic conductivity of 8.12 × 10−3 S cm−1. The prepared MPNCPEM of high ionic conductivity was subjected into LSV study. Finally, the electrode/electrolyte interfacial resistance was evaluated by monitoring the impedance response at different time intervals.  相似文献   

10.
Several 1-alkyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquids (alkyl-DMimTFSI) were prepared by changing carbon chain lengths and configuration of the alkyl group, and their electrochemical properties and compatibility with Li/LiFePO4 battery electrodes were investigated in detail. Experiments indicated the type of ionic liquid has a wide electrochemical window (−0.16 to 5.2 V vs. Li+/Li) and are theoretically feasible as an electrolyte for batteries with metallic lithium as anode. Addition of vinylene carbonate (VC) improves the compatibility of alkyl-DMimTFSI-based electrolytes towards lithium anode and LiFePO4 cathode, and enhanced the formation of solid electrolyte interface to protect lithium anodes from corrosion. The electrochemical properties of the ionic liquids obviously depend on carbon chain length and configuration of the alkyl, including ionic conductivity, viscosity, and charge/discharge capacity etc. Among five alkyl-DMimTFSI-LiTFSI-VC electrolytes, Li/LiFePO4 battery with the electrolyte-based on amyl-DMimTFSI shows best charge/discharge capacity and reversibility due to relatively high conductivity and low viscosity, its initial discharge capacity is about 152.6 mAh g−1, which the value is near to theoretical specific capacity (170 mAh g−1). Although the battery with electrolyte-based isooctyl-DMimTFSI has lowest initial discharge capacity (8.1 mAh g−1) due to relatively poor conductivity and high viscosity, the value will be dramatically added to 129.6 mAh g−1 when 10% propylene carbonate was introduced into the ternary electrolyte as diluent. These results clearly indicates this type of ionic liquids have fine application prospect for lithium batteries as highly safety electrolytes in the future.  相似文献   

11.
The effect of quaternary ammonium on discharge characteristic of Li/O2 cells was studied by using Super-P carbon as air cathode, a 0.2 mol kg−1 LiSO3CF3 1:3 (wt.) PC/DME solution as baseline electrolyte, and tetrabutylammonium triflate (NBu4SO3CF3) as an electrolyte additive or a co-salt. Results show that Li/O2 cells can run normally in an electrolyte with NBu4SO3CF3 as the sole conductive salt. However, such cells suffer lower voltage and capacity as compared with those using the lithium ionic baseline electrolyte. This is due to the larger molar volume of quaternary ammonium cation, which results in less deposition of oxygen reduction products on the surface of carbon. When used as an electrolyte additive or a co-salt, the ammonium is shown to increase capacity of Li/O2 cells. The plot of differential capacity versus cell voltage shows that the Li/O2 cell with ammonium added has broad and scatted differential capacity peaks between the voltages of two reactions of “2Li + O2 → Li2O2” and “2Li + Li2O2 → 2Li2O”. This phenomenon can be attributed to the phase transfer catalysis (PTC) property of quaternary ammonium on the second reaction. Due to inverse effects of the cation geometric volume and the PTC property of ammonium ions on the discharge capacity, there is an optimum range for the concentration of ammonium. It is shown that the addition of NBu4SO3CF3 increases discharge capacity of Li/O2 cell only when its concentration is in a range from 5 mol% to 50 mol% vs. the total of Li/ammonium mixed salt, and that the optimum concentration is about 5 mol%. In this work we show that the addition of 5 mol% NBu4SO3CF3 into the baseline electrolyte can increase discharge capacity of a Li/O2 cell from 732 mAh g−1 to 1068 mAh g−1 (in reference to the weight of Super-P carbon) when the cell is discharged at 0.2 mA cm−2.  相似文献   

12.
In this study, we prepare a kind of solid polymer electrolyte (SPE) based on N-ethyl-N′-methyl imidazolium tetrafluoroborate (EMIBF4), LiBF4 and poly(vinylidene difluoride-co-hexafluoropropylene) [P(VdF-HFP)] copolymer. The resultant SPE displays high thermal stability above 300 °C and high room temperature ionic conductivity near to 10−3 S cm−1. Its electrochemical properties are improved with incorporation of a zwitterionic salt 1-(1-methyl-3-imidazolium)propane-3-sulfonate (MIm3S). When the SPE contains 1.0 wt% of the MIm3S, it has a high ionic conductivity of 1.57 × 10−3 S cm−1 at room temperature, the maximum lithium ions transference number of 0.36 and the minimum apparent activation energy for ions transportation of 30.9 kJ mol−1. The charge-discharge performance of a Li4Ti5O12/SPE/LiCoO2 cell indicates the potential application of the as-prepared SPE in lithium ion batteries.  相似文献   

13.
In this study, a ceria-based composite electrolyte was investigated for intermediate-temperature solid oxide fuel cells (SOFCs) based on SDC-25 wt.% K2CO3. Sodium carbonate co-precipitation process by which SDC powder was adopted and sound cubic fluorite structure was formed after SDC powders were sintered at 750 °C for 3 h. The crystallite size of the particle was 21 nm in diameter as calculated from data obtained through X-ray diffraction. The conductivity of the composite electrolyte proposed in this study was much higher than that of pure SDC at the comparable temperature of 550-700 °C. The transition of the ionic conductivity occurred at 650 °C. Based on this type of composite electrolyte, single cell with the electrolyte thickness of 0.3 mm were fabricated using dry pressing, with nickel oxide adopted as anode and SSC as cathode. The single cell was then tested at 550-700 °C on home-made equipment in this study, using hydrogen/air. The maximum power density and open circuit voltage (OCV) achieved 600 mW cm−2 and 1.05 V at 700 °C, respectively.  相似文献   

14.
《Ceramics International》2023,49(3):4473-4481
All solid-state lithium batteries (ASS-LBs) with polymer-based solid electrolytes are a prospective contender for the next-generation batteries because of their high energy density, flexibility, and safety. Among all-polymer electrolytes, PEO-based solid polymer electrolytes received huge consideration as they can dissolve various Li salts. However, the development of an ideal PEO-based solid polymer electrolyte is hindered by its insufficient tensile strength and lower ionic conductivity due to its semi-crystalline and soft chain structure. In order to lower the crystallization and improve the performance of PEO-based solid polymer electrolyte, tungsten trioxide (WO3) nanofillers were introduced into PEO matrix. Herein, a PEO20/LiTFSI/x-WO3 (PELI-xW) (x = 0%, 2.5%, 5%, 10%) solid composite polymer electrolyte was prepared by the tape casting method. The solid composite polymer electrolyte containing 5 wt% WO3 nanofillers achieved the highest ionic conductivity of 7.4 × 10-4 S cm-1 at 60 °C. It also confirms a higher Li-ion transference number of 0.42, good electrochemical stability of 4.3V, and higher tensile strength than a PEO/LiTFSI (PELI-0W) fillers-free electrolyte. Meanwhile, the LiFePO4│PELI-xW│Li ASS-LBs demonstrated high performance and cyclability. Based on these findings, it can be considered a feasible strategy for the construction of efficient and flexible PEO-based solid polymer electrolytes for next-generation solid-state batteries.  相似文献   

15.
A number of redox systems have been investigated in this work with the aim of identifying electrolytes suitable for testing redox flow battery cell designs. The criteria for the selection of suitable systems were fast electrochemical kinetics and minimal cross-contamination of active electrolytes. Possible electrolyte systems were initially selected based on cyclic voltammetry data. Selected systems were then compared by charge/discharge experiments using a simple H-type cell. The all-vanadium electrolyte system has been developed as a commercial system and was used as the starting point in this study. The performance of the all-vanadium system was significantly better than an all-chromium system which has recently been reported. Some metal-organic and organic redox systems have been reported as possible systems for redox flow batteries, with cyclic voltammetry data suggesting that they could offer near reversible kinetics. However, Ru(acac)3 in acetonitrile could only be charged efficiently to 9.5% of theoretical charge, after which irreversible side reactions occurred and [Fe(bpy)3](ClO4)2 in acetonitrile was found to exhibit poor charge/discharge performance.  相似文献   

16.
Polyethylene oxide (PEO) based-solid polymer electrolytes were prepared with low weight polymers bearing carboxylic acid groups added onto the polymer backbone, and the variation of the conductivity and performance of the resulting Li ion battery system was examined. The composite solid polymer electrolytes (CSPEs) were composed of PEO, LiClO4, PAA (polyacrylic acid), PMAA (polymethacrylic acid), and Al2O3. The addition of additives to the PEO matrix enhanced the ionic conductivities of the electrolyte. The composite electrolyte composed of PEO:LiClO4:PAA/PMAA/Li0.3 exhibited a low polarization resistance of 881.5 ohms in its impedance spectra, while the PEO:LiClO4 film showed a high value of 4,592 ohms. The highest ionic conductivity of 9.87 × 10−4 S cm−1 was attained for the electrolyte composed of PEO:LiClO4:PAA/PMAA/Li0.3 at 20 °C. The cyclic voltammogram of Li+ recorded for the cell consisting of the PEO:LiClO4:PAA/PMAA/Li0.3:Al2O3 composite electrolyte exhibited the same diffusion process as that obtained with an ultra-microelectrode. Based on this electrolyte, the applicability of the solid polymer electrolytes to lithium batteries was examined for an Li/SPE/LiNi0.5Co0.5O2 cell.  相似文献   

17.
New functionalized ILs based on quaternary ammonium cations with three or four ether groups and TFSI anion were synthesized and characterized. Physical and electrochemical properties, including melting point, thermal stability, viscosity, conductivity and electrochemical stability were investigated for these ILs. Five ILs with lower viscosity in these ILs were applied in lithium battery as new electrolytes. Behavior of lithium redox and charge–discharge characteristics of lithium battery were investigated for these IL electrolytes with 0.6 mol kg−1 LiTFSI. Lithium plating and striping on Ni electrode could be observed in these IL electrolytes. Li/LiFePO4 cells using these IL electrolytes without additives had good capacity and cycle property at the current rate of 0.1 C, and the N(2o1)3(2o2)TFSI and N2(2o1)3TFSI electrolytes owned better rate property.  相似文献   

18.
ABSTRACT

In this study, electrolyte materials were synthesized by mixing a highly conducting salt (K2CO3) with the poly(vinyl alcohol) (PVA) in different proportions (from 10 to 50 wt.%). The synthesized electrolyte was characterized using Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) for their functional groups, morphology, thermal stability, glass transition temperature (Tg ), ionic conductivity, and potential window, respectively. Characterization results show that the complex formation between PVA and K2CO3 salt has been established by FTIR spectroscopic study, which indicates the detailed interaction between PVA and the salts in PVA-K2CO3 composites while the amorphous nature of the electrolyte after incorporation of the salts has been confirmed by FESEM analysis. Similarly, TGA and DSC analysis revealed that both decomposition temperature and Tg of the synthesized electrolytes decrease with the addition of K2CO3 due to the strong plasticizing effect of the salt. The results confirm that the electrolytes have sufficient thermal stability for supercapacitor operation, as well as an amorphous phase to effectively deliver high ionic conductivity. The highest ionic conductivity of 4.53 × 10?3 S cm?1 at 373 K and potential window of 2.7 V was exhibited by PK30 (30 wt.% K2CO3), which can be considered as high value for solid-state electrolytes which are superior to those electrolytes from PVA salts earlier reported. The results similarly show that the prepared electrolyte is temperature-dependent as conductivity increase with increase in temperature. Based on these properties, it can be imply that the PVA-K2CO3 gel polymer electrolyte (GPE) could be a promising electrolyte candidate for EDLC applications. The results indicate that the PVA-K2CO3 as a new electrolyte material has great potential in practical applications of portable energy-storage devices.  相似文献   

19.
Several onium cations having vinyl group formed ionic liquids after coupling with bis(trifluoromethanesulfonyl)imide. These monomers were polymerized, and the relation between onium cation structure and properties of thus polymerized ionic liquids was investigated. The polymerized ionic liquid having ethylimiadzolium cation unit showed the highest ionic conductivity of around 10−4 S cm−1 at 30 °C among the obtained polymers reflecting the lowest glass transition temperature of −59 °C. These polymers were thermally stable and their decomposition temperatures were about 350 °C. The ionic conductivity of the polymerized ionic liquids decreased by both the addition of lithium bis(trifluoromethanesulfonyl)imide and the polymerization in the presence of cross-linker. However, the polymerized ionic liquid having 1-methylpiperidinium cation structure showed good lithium ion transference number of 0.43 at room temperature.  相似文献   

20.
A study of the electrochemical properties of a PEO-based polymer electrolyte with nanometric ZrO2 as ceramic filler has been carried out in order to confirm an earlier reported model dealing with the role of ceramic fillers within PEO-based polymer electrolytes as components that enhance such properties as conductivity, lithium transference number, compatibility with lithium metal electrodes and cyclability. A prototype of a lithium polymer battery, based on a membrane made from a nanocomposite polymer electrolyte doped with ZrO2, utilizing LiFePO4 + 1%Ag as cathode, has been assembled and galvanostatically cycled, resulting in excellent performance at temperatures ranging from 100 °C to 60 °C (close to the crystallization temperature of PEO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号