首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pore-network model was developed to study the water transport in hydrophobic gas diffusion layers (GDLs) of polymer electrolyte membrane fuel cells (PEMFCs). The pore structure of GDL materials was modeled as a regular cubic network of pores connected by throats. The governing equations for the two-phase flow in the pore-network were obtained by considering the capillary pressure in the pores, and the entry pressure and viscous pressure drop through the throats. Numerical results showed that the saturation distribution in GDLs maintained a concave shape, indicating the water transport in GDLs was strongly influenced by capillary processes. Parametric studies were also conducted to examine the effects of several geometrical and capillary properties of GDLs on the water transport behavior and the saturation distribution. The proper inlet boundary condition for the liquid water entering GDLs was discussed along with its effects on the saturation distribution.  相似文献   

2.
After PTFE treatment, a gas diffusion layer (GDL) of a polymer electrolyte fuel cell (PEFC) features mixed wettability, which substantially impacts liquid water transport and associated mass transport losses. A pore-network model is developed in this work to delineate the effect of GDL wettability distribution on pore-scale liquid water transport in a GDL under fuel cell operating conditions. It is found that in a mixed-wet GDL liquid water preferentially flows through connected GDL hydrophilic network, and thereby suppresses the finger-like morphology observed in a wholly hydrophobic GDL. The effect of GDL hydrophilic fraction distribution is investigated, and the existence of an optimum hydrophilic fraction that leads to the least mass transport losses is established. The need for controlled PTFE treatment is stressed, and a wettability-tailored GDL is proposed.  相似文献   

3.
In proton exchange membrane fuel cell (PEMFC) models, oxygen effective diffusivity is the most important parameter to characterize the oxygen transport in the gas diffusion layer (GDL). However, its determination is a challenge due to its complex dependency on GDL structure. In the present study, a three-dimensional network consisting of spherical pores and cylindrical throats is developed and used to investigate the effects of GDL structural parameters on oxygen effective diffusivity under the condition with/without water invasion process. Oxygen transport in the throat is described by Fick's law and water invasion process in the network is simulated using the invasion percolation with trapping algorithm. The simulation results reveal that oxygen effective diffusivity is slightly affected by network size but increases with decreasing the network heterogeneity and with increasing the pore connectivity. Impacts of network anisotropy on oxygen transport are also investigated in this paper. The anisotropic network is constructed by constricting the throats in the through-plane direction with a constriction factor. It is found that water invasion has a more severe negative influence on oxygen transport in an anisotropic network. Finally, two new correlations are introduced to determine the oxygen effective diffusivity for the Toray carbon paper GDLs.  相似文献   

4.
A topologically equivalent pore network (TEPN) model is developed for the first time to extract pore networks directly from gas diffusion layer (GDL) microstructures and thus account for all structural features of a GDL material. A generic framework of TEPN modeling is presented to design GDL structures that enable improved water management. With TEPNs used as input to a two-phase flow simulator, constitutive relations and steady-state liquid saturation profiles for carbon paper and carbon cloth are obtained and reported in this work. The results indicate a strong influence of the GDL morphology on water transport characteristics, which helps unravel the structure-performance relationship for GDLs.  相似文献   

5.
Characterization of gas diffusion layers for PEMFC   总被引:1,自引:0,他引:1  
M. Han  J.H. Xu  S.P. Jiang 《Electrochimica acta》2008,53(16):5361-5367
A carbon-filled gas diffusion layer (CFGDL), which is in the configuration similar to conventional carbon cloth gas diffusion layer (GDL) coated with carbon layer on both faces, was investigated and compared with conventional carbon paper-based single-layer and dual-layer GDLs. Like the carbon cloth GDL, CFGDL has presented superior performances over the single-layer or dual-layer GDL in all three polarization (activation, ohmic and concentration) controlled regions under electrochemical characterizations (steady-state polarization and electrochemical impedance spectra). The results from SEM showed that CFGDL has the same thickness of 0.11 mm as that of single-layer GDL, while dual-layer GDL has a thickness of 0.18 mm. The fully filled carbon paper with carbon/PTFE filler, as seen in the SEM image, displayed good support for the catalyst layer and electrolyte phase, allowing good electrical contact between the GDL/catalyst/membrane and GDL/flow field plate to be achieved. From porosimetry analysis, CFGDL presented a lower porosity of 67% and a much smaller average pore diameter of 4.7 μm compared to the single-layer GDL (porosity of 77% and pore diameter of 35.8 μm) and dual-layer GDL (porosity of 73% and pore diameter of 25.5 μm); however, it also gave the largest limiting current density, which reflects the improvement in mass transportation. This phenomenon is likely attributed to the fast removal of micro-water droplets formed in the CFGDL structure of the electrode.  相似文献   

6.
In polymer electrolyte fuel cells (PEFCs), condensation of water within the pore network of the gas diffusion layers (GDL) can influence the gas transport properties and thus reduce the electrochemical conversion rates. The use of X-ray tomographic microscopy (XTM), which allows for a resolution in the order of one micrometer is investigated for studying ex situ the local saturation in GDL's. The strength of XTM is the high spatial resolution with simultaneous contrast for water and carbon, allowing for non-destructive 3D-imaging of the solid and the contained water. The application of this method for imaging the ex situ water intrusion into the porous network of GDLs is explored using absorption and phase contrast methods. It is shown that the inhomogeneous filling behavior of GDL materials can indeed be visualized with sufficient resolution. For Toray paper TGP-H-060 the local saturation was measured as function of the water pressure. The results, evaluated in 1D, 2D and 3D show a liquid water retention effect at the denser layers near the surface. A comparison with established capillary pressure functions is presented. Altogether, the results show the potential of the XTM-method as a tool for studying the liquid water behavior in PEFC on a microscopic scale.  相似文献   

7.
Water management is one of the most important factors for improving the performance in polymer electrolyte membrane fuel cells (PEMFCs). The micro-porous layers (MPLs) in the membrane-electrode assembly provide proper pores and paths for mass transport, thereby allowing for the control of the water balance. In this study, a copolymer containing hydrophilic functional groups is introduced into the binder materials of the MPL instead of a highly hydrophobic binder. When 10 wt.% of the binder is incorporated in the MPL on the cathode side, the best performance is exhibited and the ohmic resistance is decreased. Although the charge transfer resistance at low potential is higher than that of the hydrophobic treated MPL, due to the flooding effects, the charge transfer resistance at high potential becomes smaller. This indicates that excess liquid absorption from the catalyst layer to the hydrophilic MPL occurs more strongly than in the case of the hydrophobic MPL. This may bring about an increase in the accessibility of oxygen to the active sites, because the excess liquid near the catalyst agglomerates is expelled as fast as possible. Consequently, the hydrophilicity control in the MPL has a positive effect on the water management in PEMFCs.  相似文献   

8.
Performance losses due to flooding of gas diffusion layers (GDLs) and flow fields as well as membrane dehydration are two of the major problems in PEFC. In this investigation, the effect of GDL on the cell water management in PEFC is studied using segmented and single cell experiments. The behaviour of four different commercial GDLs was investigated at both high and low inlet humidity conditions by galvanostatic fuel cell experiments. The influence of varying reactant humidity and gas composition was studied. The results at high inlet humidity show that none of the studied GDLs are significantly flooded on the anode side. On the other hand, when some of the GDLs are used on the cathode side they are flooded, leading to increased mass transfer losses. The results at low inlet humidity conditions show that the characteristics of the GDL influence the membrane hydration. It is also shown that inlet humidity on the anode side has a major effect on flooding at the cathode.  相似文献   

9.
The effect of annealing temperature Tann on mixed proton transport and charge transfer-controlled oxygen reduction in gas diffusion electrodes used in polymer electrolyte membrane fuel cells (PEMFCs) was investigated in 1 M H2SO4 solution using AC-impedance spectroscopy and potentiostatic current transient technique. For this purpose, the gas diffusion electrodes were annealed at different temperatures ranging from 140° to 180 °C in order to control the proton transport resistance distribution across the active catalyst layer (ACL). For the annealed gas diffusion electrodes with different proton transport resistance distributions, the measured impedance spectra exhibited a straight line inclined at a constant angle higher in absolute value than 45° to the real axis at high frequencies, followed by a depressed arc at low frequencies.From the quantitative analysis of the measured impedance spectra based upon the transmission line model (TLM) modified with the proton transport resistance distribution, it was found that as Tann increased, the average proton transport resistance Rave and the standard deviation σ of the proton transport resistance distribution increased as well. Furthermore, as Tann rose, the charge transfer resistance Rct increased and simultaneously the double layer capacitance Cdl decreased due to the smaller electrochemical active area Aea. From the analysis of the cathodic current transients measured during nitrogen blowing, it was noted that as Tann increased, the current decayed more rapidly with time, suggesting that the larger values of Rave and σ kinetically impede proton transport through the Nafion membrane within the ACL due to the wider RC time constant distribution.  相似文献   

10.
Sehkyu Park 《Fuel》2009,88(11):2068-5582
The effect of the content of the hydrophobic agent in the cathode gas diffusion layer (GDL) on the mass transport in the proton exchange membrane fuel cells (PEMFCs) was studied using mercury porosimetry, scanning electron microscopy, and electrochemical polarization techniques. The mercury intrusion data and SEM micrograph indicated that the hydrophobic agent alters the surface and bulk structure of the GDL, thereby controlling gas-phase void volume and liquid water transport. The electrochemical polarization curves were measured and quantitatively analyzed to determine the oxygen transport limitation both in the catalyst layer and the GDL. Evaluation of the parameter ζ, which represents the cathode GDL characteristics for liquid water transport, indicated that the optimized content of the hydrophobic agent and effective water management results from a trade-off between the hydrophobicity and the absolute permeability for faster water drainage.  相似文献   

11.
This paper seeks to develop a structure-performance relationship for gas diffusion layers (GDLs) of polymer electrolyte fuel cells (PEFCs), and hence to explain the performance differences between carbon paper (CP) and carbon cloth (CC). Three-dimensional simulations, based on a two-phase model with GDL structural information taken into account, are carried out to explore the fundamentals behind experimentally observed performance differences of the two carbon substrates, i.e. CC and CP, under low- and high-humidity operations. Validation against polarization data is made under both operating conditions, and the results indicate that the CC is the better choice as a GDL material at high-humidity operations due to its low tortuosity of the pore structure and its rough textural surface facilitating droplet detachment. However, under dry conditions, the CP shows better performance due to its more tortuous structure, which prevents the loss of product water to dry gas streams, thus increasing the membrane hydration level and reducing the ohmic loss. The present work is one step toward developing a science-based framework for selection of materials for next-generation, high-performance gas diffusion media.  相似文献   

12.
Incorporation of silica particles through a sol-gel process into the anode-catalyst layer with a sol-gel modified Nafion-silica composite membrane renders easy retention of back-diffused water from the cathode to anode through the composite membrane electrolyte, increases the catalyst-layer wettability and improves the performance of the Polymer Electrolyte Fuel Cell (PEFC) while operating under relative humidity (RH) values ranging between 18% and 100% with gaseous hydrogen and oxygen reactants at atmospheric pressure. A peak power density of 300 mW cm−2 is achieved at a load current-density value of 1200 mA cm−2 for the PEFC employing a sol-gel modified Nafion-silica composite membrane and operating at 18% RH. Under similar operating conditions, the PEFC with a Membrane Electrode Assembly (MEA) comprising Nafion-silica composite membrane with silica in the anode-catalyst layer delivers a peak power density of 375 mW cm−2. By comparison, the PEFC employing commercial Nafion membrane fails to deliver satisfactory performance at 18% RH due to the limited availability of water at its anode, acerbated electro-osmotic drag of water from anode to cathode and insufficient water back diffusion from cathode to anode causing the MEA to dehydrate.  相似文献   

13.
In situ grown carbon nanotubes (CNTs) on carbon paper as an integrated gas diffusion layer (GDL) and catalyst layer (CL) were developed for proton exchange membrane fuel cell (PEMFC) applications. The effect of their structure and morphology on cell performance was investigated under real PEMFC conditions. The in situ grown CNT layers on carbon paper showed a tunable structure under different growth processes. Scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) demonstrated that the CNT layers are able to provide extremely high surface area and porosity to serve as both the GDL and the CL simultaneously. This in situ grown CNT support layer can provide enhanced Pt utilization compared with the carbon black and free-standing CNT support layers. An optimum maximum power density of 670 mW cm−2 was obtained from the CNT layer grown under 20 cm3 min−1 C2H4 flow with 0.04 mg cm−2 Pt sputter-deposited at the cathode. Furthermore, electrochemical impedance spectroscopy (EIS) results confirmed that the in situ grown CNT layer can provide both enhanced charge transfer and mass transport properties for the Pt/CNT-based electrode as an integrated GDL and CL, in comparison with previously reported Pt/CNT-based electrodes with a VXC72R-based GDL and a Pt/CNT-based CL. Therefore, this in situ grown CNT layer shows a great potential for the improvement of electrode structure and configuration for PEMFC applications.  相似文献   

14.
Shanhai Ge 《Electrochimica acta》2007,52(14):4825-4835
This work experimentally explores the fundamental characteristics of a polymer electrolyte fuel cell (PEFC) during subzero startup, which encompasses gas purge, cool down, startup from a subfreezing temperature, and finally warm up. In addition to the temperature, high-frequency resistance (HFR) and voltage measurements, direct observations of water or ice formation on the catalyst layer (CL) surface have been carried out for the key steps of cold start using carbon paper punched with microholes and a transparent cell fixture. It is found that purge time significantly influences water content of the membrane after purge and subsequently cold-start performance. Gas purge for less than 30 s appears to be insufficient, and that between 90 and 120 s is most useful. After gas purge, however, the cell HFR relaxation occurs for longer than 30 min due to water redistribution in the membrane-electrode assembly (MEA). Cold-start performance following gas purge and cool down strongly depends on the purge time and startup temperature. The cumulative product water measuring the isothermal cold-start performance increases dramatically with the startup temperature. The state of water on the CL surface has been studied during startup from ambient temperatures ranging from −20 to −1 °C. It is found that the freezing-point depression of water in the cathode CL is 1.0 ± 0.5 °C and its effect on PEFC cold start under automotive conditions is negligible.  相似文献   

15.
Gas diffusion through porous media is critical for the high current density operation of a polymer electrolyte membrane fuel cell, where the electrochemical reaction becomes rate limited by the diffusive flux of reactants. Precise knowledge of the diffusivity through various components in a fuel cell is necessary for accurate modeling and analysis. However, many experimental measurements of diffusivity in literature have high measurement uncertainty. In this study, an improvement to the accuracy of the Loschmidt cell method is presented for measuring the diffusivity through materials with a submillimeter thickness. The diffusivity through various gas diffusion layers (GDLs) is measured, and the relative differences between GDLs are explained using scanning electron microscopy and the method of standard porosimetry. The experimental results from this study and others in current literature are used to develop a generalized correlation for the diffusibility as a function of porosity in the through‐plane direction of GDLs. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1409–1419, 2013  相似文献   

16.
A numerical model is developed to study electrolyte dependent kinetics in fuel cells. The model is based on the Poisson–Nernst–Planck (PNP) and generalized-Frumkin–Butler–Volmer (gFBV) equations, and is used to understand how the diffuse layer and ionic transport play a role in the performance difference between acidic and alkaline systems. The laminar flow fuel cell (LFFC) is used as the model fuel cell architecture to allow for the appropriate comparison of equivalent acidic and alkaline systems. We study the overall cell performance and individual electrode polarizations of acidic and alkaline fuel cells for both balanced and unbalanced electrode kinetics as well as in the presence of transport limitations. The results predict cell behavior based on electrolyte composition that strongly correlates with observed experimental results from literature and provides insight into the fundamental cause of these results. Specifically, it is found that the working ion concentration at the reaction plane plays a significant role in fuel cell performance including activation losses and the response to different kinetic rates at an individual electrode. The working ion and the electrode where its consumed are different for acidic and alkaline fuel cells. Therefore, we compare the role of the diffuse region in both acidic and alkaline fuel cells. From this we conclude that oxidant reduction at the cathode and slow fuel oxidation (such as alcohol oxidation) can be improved with an alkaline electrolyte.  相似文献   

17.
The imperfect interfacial contact between the bipolar plate (BP) and the diffusion medium (DM) can have a significant impact on the multi-phase flow and current transport in an operating polymer electrolyte fuel cell (PEFC). The objective of this work is to describe the impact of the BP and DM surface morphologies and the resulting interfacial contact on PEFC performance. In this study, the surface morphology of several BP and DM samples was digitally characterized using optical profilometry (OP). The benchmark surface data were then utilized in a microscopic model developed to simulate the BP|DM interfacial contact under compression. The microscopic model is based on the fractal modeling approach, which provides an accurate representation of the BP|DM interfacial contact by suppressing the resolution dependence of the surface profiles in consideration. Results indicate that the uncompressed surface morphology of mating materials, elasticity of these components, and local compression pressure are the key parameters that influence the BP|DM contact. The model results show that the void space along the BP|DM interface can potentially store a significant amount of liquid water (from 0.85 to 3.5 mg/cm2), which can result in reduced durability and performance of the PEFC. The model predicts that a 50% drop in the DM surface roughness results in nearly a 40% drop in the BP|DM contact resistance and a 15% drop in the BP|DM interfacial water storage capacity.  相似文献   

18.
19.
The cathode catalyst layer (CCL) is the major competitive ground for reactant transport, electrochemical reaction, and water management in a polymer electrolyte fuel cell (PEFC). Our model, presented here, accounts for the full coupling of random porous morphology, transport properties, and electrochemical conversion in CCLs. It relates spatial distributions of water, oxygen, electrostatic potential, and reaction rates to the effectiveness of catalyst utilization, water handling capabilities, and voltage efficiency. A feedback mechanism, involving the non-linear coupling between liquid water accumulation and oxygen depletion is responsible for the transition from a state of low partial saturation with high voltage efficiency to a state with excessive water accumulation that corresponds to highly non-uniform reaction rate distributions and large voltage losses. The transition between these states could be monotonous or it could involve bistability in the transition region. We introduce stability diagrams as a convenient tool for assessing CCL performance in dependence of composition, porous structure, wetting properties, and operating conditions.  相似文献   

20.
针对直接甲醇燃料电池(DMFC)中普遍使用NafionTM系列全氟磺酸膜而存在的甲醇穿透问题,鉴于质子、水和甲醇在传递中的相互关联,提出将目标膜视为优先透过质子的质子-甲醇分离膜,制备了在渗透蒸发醇-水分离领域有良好分离效果的聚乙烯醇(PVA)与全氟磺酸材料共混形成的PVA-Nafion共混膜并研究了膜的阻醇和质子导电性能。PVA的加入有效调节了膜内的亲、憎水平衡,使膜的阻醇效果较NafionTM商品膜提高,且共混后,膜的阻醇性能并非只是PVA和Nafion材料各自性能的简单加和平均,而是在一定配比(WNafion=60%)下出现了最优值。所制备的共混膜中有几种膜的透过系数P达到了10-8cm2穝-1,而电导率s 达10-4S穋m-1;如果以电导率和甲醇透过系数的比值(s / P)作为综合指标,共混膜的综合性能可较Nafion117商品膜高约2.5倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号