首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper concerns fracture dynamics problems for elastic cracked solids with allowance for the crack faces contact interaction. The problem for a linear crack under an oblique time-harmonic wave is solved by the method of boundary integral equations. The effect of friction, governed by the Coulomb friction law, is incorporated into the analysis. The results are obtained for various values of the angle of the wave incidence, the wave frequency and the friction coefficient. They are compared with those obtained without allowance for the crack faces contact interaction.  相似文献   

2.
The problem of interaction between equal coplanar elliptic cracks embedded in a homogeneous isotropic elastic medium and subjected to shear loading was solved analytically by Saha et al. (1999) International Journal of Solids and Structures 36, 619–637, using an integral equation method. In the present study the same integral equation method has been used to solve the title problem. Analytical expression for the two tangential crack opening displacement potentials have been obtained as series in terms of the crack separation parameter i up to the order i5,(i=1,2) for both the elliptic as well as penny-shaped crack. Expressions for modes II and III stress intensity factors have been given for both the cracks. The present solution may be treated as benchmark to solutions of similar problems obtained by various numerical methods developed recently. The analytical results may be used to obtain solutions for interaction between macro elliptic crack and micro penny-shaped crack or vice-versa when the cracks are subjected to shear loading and are not too close. Numerical results of the stress-intensity magnification factor has been illustrated graphically for different aspect ratios, crack sizes, crack separations, Poisson ratios and loading angles. Also the present results have been compared with the existing results of Kachanov and Laures (1989) International Journal of Fracture 41, 289–313, for equal penny-shaped cracks and illustrations have been given also for the special case of interaction between unequal penny-shaped cracks subjected to uniform shear loading.  相似文献   

3.
The frictionless contact interaction of the finite crack edges in an infinite plane is studied for the case of normal incidence of two harmonic tension–compression waves with multiple mode-shifted frequencies. Boundary integral equation method and constrained optimization algorithm are used for the problem solution. Distribution of the forces of contact interaction and displacement discontinuity in space and time are analyzed. Influence of the wave frequencies on the stress intensity factor for different normalized wave numbers is considered here.  相似文献   

4.
This paper investigates a numerical solution for multiple crack problem in an infinite plate under remote compression. The influence of friction is taken into account. In the first step of the solution, we make a full contact assumption on the crack faces. The full contact assumption means that one component of the dislocation distribution vanishes, and the first mode stress intensity factors (K 1) at the crack tips become zero. On the above-mentioned assumption, the problem can be solved by using integral equation method, and the second mode stress intensity factors (K 2) at the crack tips can be evaluated. Meantime, after solving the integral equation the normal contact stress on the crack faces can be evaluated. The next step is to examine the full contact assumption. If the contact stresses on the crack faces are definitely negative, the solution is true. Otherwise, the obtained solution is not true. It is found from present study that in most cases the full contact condition is satisfied, and only in a few cases the full contact condition is violated. Numerical examples are given. It is found that the friction can lower the stress intensity factors at crack tips in general.  相似文献   

5.
The paper deals with the plane problem of stress distribution in an elastic ponderable layer with a stationary edge crack normal to the boundary plane. The layer is situated and fixed on a rigid foundation. The stresses are caused by action of body forces. By using the method of Fourier transforms the problem is reduced to a system of dual integral equations and next, to a Fredholm integral equation of the second kind. The numerical analysis of the Fredholm equation permitted to determine the stress intensity factor and the crack opening displacement. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
In this study, an axisymmetrical problem for a penny-shaped crack under radial shear is considered. The crack is located parallel to the surface of a halfspace, which is subjected to initial stress parallel to the crack plane. An approach proposed by Guz (1983) in the framework of the three-dimensional linearised solid mechanics is used. Analysis involves reducing the problem to a system of Fredholm integral equations of the second kind, where the solutions are identified with harmonic potential functions. The representations of the stress intensity factors K I and K II near the crack edges are obtained. These stress intensity factors are both influenced by the initial stress.  相似文献   

7.
The mixed-mode thermoelectromechanical fracture problem for a functionally graded piezoelectric material (FGPM) strip with a penny-shaped crack is considered. It is assumed that the thermoelectroelastic properties of the strip vary continuously along the thickness of the strip, and that the strip is under thermal loading. The crack faces are supposed to be insulated thermally and electrically. The thermal and electromechanical problems are reduced to singular integral equations and solved numerically. The stress and electric displacement intensity factors are presented for different crack size, crack position and material nonhomogeneity.  相似文献   

8.
A computational model for contact fatigue damage analysis of gear teeth flanks is presented in this paper. The model considers the conditions required for the surface fatigue crack initiation and then allows for proper simulation of the fatigue crack propagation that leads to the appearance of small pits on the contact surface. The fatigue process leading to pitting is divided into crack initiation and a crack propagation period.The model for prediction of identification of critical material areas and the number of loading cycles, required for the initial fatigue crack to appear, is based on Coffin-Manson relations between deformations and loading cycles, and comprises characteristic material fatigue parameters. The computational approach is based on continuum mechanics, where a homogenous and elastic material model is assumed and results of cyclic loading conditions are obtained using the finite element method analysis.The short crack theory together with the finite element method is then used for simulation of the fatigue crack growth. The virtual crack extension (VCE) method, implemented in the finite element method, is used for simulating the fatigue crack growth from the initial crack up to the formation of the surface pit. The relationship between the stress intensity factor K and crack length a, which is needed for determination of the required number of loading cycles Np for a crack propagation from the initial to the critical length, is shown.  相似文献   

9.
The problem of a centrally cracked, linear elastic orthotropic strip loaded in bending by three point forces is analyzed and discussed. Coulomb friction is assumed between the crack faces to study the influence of the friction coefficient on the strain energy release rate. Under certain simplifying assumptions the problem is reduced to the solution of a singular integral equation which is evaluated numerically. The results are compared with the solution of the same problem obtained using the beam theory; limits of the application of beam theory for the reduction of experimental data are discussed.  相似文献   

10.
Two different boundary element methods (BEM) for crack analysis in two dimensional (2-D) antiplane, homogeneous, isotropic and linear elastic solids by considering frictional contact of the crack edges are presented. Hypersingular boundary integral equations (BIE) in time-domain (TD) and frequency domain (FD), with corresponding elastodynamic fundamental solutions are applied for this purpose. For evaluation of the hypersingular integrals involved in BIEs a special regularization process that converts the hypersingular integrals to regular integrals is applied. Simple regular formulas for their calculation are presented. For the problems solution while considering frictional contact of the crack edges a special iterative algorithm of Udzava's type is elaborated and used. Numerical results for crack opening, frictional contact forces and dynamic stress intensity factors (SIFs) are presented and discussed for a finite III-mode crack in an infinite domain subjected to a harmonic crack-face loading and considering crack edges frictional contact interaction using the TD and FD approaches.  相似文献   

11.
An electrically impermeable interface crack between two semi-infinite piezoelectric planes under remote mechanical tension-shear and electrical loading is studied. Assuming the stresses, strains and displacements are independent on the coordinate x 2 the expressions for the elastic displacement and potential jumps as well as for the stresses and electrical displacement along the interface via a sectionally holomorphic vector function are found. Introducing an artificial contact zone at the right crack tip and assuming the materials possess the symmetry class 6 mm the problem is reduced for a wide range of bimaterial compounds to a combination of combined Dirichlet–Riemann and Hilbert boundary value problems which are solved analytically. From these solutions clear analytical expressions for characteristic mechanical and electrical parameters are derived. As particular cases of the above mentioned solution the classical (oscillating) and contact zone solutions are obtained. Further, a comparison with an associated solution for an electrically permeable crack has been performed. The fracture mechanical parameters for all models via the remote loads are found analytically and important relationships between these parameters are obtained. Due to these relationships an important algorithm of a numerical method applicable for the investigation of an interface crack in a finite sized piezoelectric bimaterial is suggested.  相似文献   

12.
A general subsurface crack propagation analysis methodology for the wheel/rail rolling contact fatigue problem is developed in this paper. A three-dimensional elasto-plastic finite element model is used to calculate stress intensity factors in wheels, in which a sub-modeling technique is used to achieve both computational efficiency and accuracy. Then the fatigue damage in the wheel is calculated using a previously developed mixed-mode fatigue crack propagation model. The advantages of the proposed methodology are that it can accurately represent the contact stress of complex mechanical components and can consider the effect of loading non-proportionality. The effects of wheel diameter, vertical loading amplitude, initial crack size, location and orientation on stress intensity factor range are investigated using the proposed model. The prediction results of the proposed methodology are compared with in-field observations.  相似文献   

13.
In this paper we introduce the boundary value problem of three-dimensional classical elasticity for an infinite body containing an elliptical crack. Using the method of simultaneous dual integral equations, the problem is transformed to the system of linear algebraic equations. Stress intensity factor is obtained in the form of the Fourier series expansion. Several solutions for specific cases of applied polynomial stress fields are derived and compared with existing results. Eligibility of the method for more complicated stress fields is demonstrated on the example of partially loaded elliptical crack.  相似文献   

14.
The opening stresses of a crack emanating from an edge notch in a 1045 quenched and tempered steel specimen were measured under two different Society of Automotive Engineers (SAE) standard service load histories having different average mean stress levels. The two spectra are the Grapple Skidder history (GSH), which has a positive average mean stress, and the Log Skidder history (LSH), which has a zero average mean stress. To capture the behaviour of the crack opening stress in the material, the crack opening stress levels were measured at 900X using an optical video microscope, at frequent intervals for each set of histories scaled to two different maximum stress ranges.A crack growth analysis based on a fracture mechanics approach was used to model the fatigue behaviour of the steel specimens for the given load spectra and stress ranges. Crack growth analysis was based on an effective strain‐based intensity factor, a crack growth rate curve obtained during closure‐free loading cycles and a local notch strain calculation based on Neuber's rule.The crack opening stress (Sop) was modelled and the model was implemented in a fatigue notch model, and the fatigue lives of the specimens under the two different spectra scaled to several maximum stress levels were estimated. The average measured crack opening stresses were between 6 and 12% of the average calculated crack opening stresses. In the interest of simplifying the use of Sop in design, the average Sop was correlated with the frequency of occurrence of the cycle reducing the Sop to the average crack opening stress level. The use of an Sop level corresponding to the cycle causing a reduction in Sop to a level reached once per 10 cycles gave a conservative estimate of average crack opening stress for all the histories.  相似文献   

15.
This paper considers the non-axisymmetric three-dimensional problem of a penny-shaped crack with permeable electric conditions imposed on the crack surfaces, subjected to a pair of point normal forces applied symmetrically with respect to the crack plane. The crack is embedded in an infinite transversely isotropic piezoelectric body with the crack face perpendicular to the axis of material symmetry. Applying the symmetry of the problem under consideration then leads to a mixed–mixed boundary value problem of a half-space, for which potential theory method is employed for the purpose of analysis. The cases of equal eigenvalues are also discussed. Although the treatment differs from that for an impermeable crack reported in literature, the resulting governing equation still has a familiar structure. For the case of a point force, exact expressions for the full-space electro-elastic field are derived in terms of elementary functions with explicit stress and electric displacement intensity factors presented. The exact solution for a uniform loading is also given.  相似文献   

16.
The maximum crack opening displacement is introduced to investigate the effect of compressive loads on crack opening stress in tension–compression loading cycles. Based on elastic–plastic finite element analysis of centre cracked finite plate and accounting for the effects of crack geometry size, Young's modulus, yield stress and strain hardening, the explicit expression of crack opening stress versus maximum crack opening displacement is presented. This model considers the effect of compressive loads on crack opening stress and avoids adopting fracture parameters around crack tip. Besides, it could be applied in a wide range of materials and load conditions. Further studies show that experimental results of da/dN ? ΔK curves with negative stress ratios could be condensed to a single curve using this crack opening stress model.  相似文献   

17.
The global elastic solution for the problem of a pressurized penny-shaped crack at the interface of two dissimilar half spaces has been numerically obtained employing the boundary element method (BEM). Using the Williams’ open model (for the whole range of feasible bi-material combinations), the comparison of the global BEM solution with an existing analytical asymptotic solution has shown: (i) that the extent of the zone in which the first term is dominant is always larger than the extent of the zone in which the interpenetrations take place and (ii) that, in the former zone, a recently proposed relation between the components of the complex stress intensity factor (SIF) and the components of the energy release rate (ERR) always yields accurate results. Consequently, the appearance of negative values of the normal contribution to the ERR in certain cases has been confirmed by the BEM solution, thus questioning the significance of the asymptotic results obtained from the open model in those cases. If the Comninou's frictionless contact model is employed, the ability of the BEM formulation employed to obtain accurate elastic solutions is shown by comparisons with an existing semi-analytical solution (for a particular bi-material combination).  相似文献   

18.
19.
A numerical study of the fundamental problem of a pressurized penny-shaped crack at the interface of two dissimilar half spaces is carried out allowing for the possibility of frictionless contact between crack faces. A new, highly accurate axi-symmetric formulation of the boundary element method (BEM) for the solution of elastic contact problems is employed. The correctness and accuracy of available predictions of different kinds for several key characteristics of the solution of this problem are checked. First, comparison of the BEM results for the near-tip contact length shows a very good agreement with some existing predictions. Second, the global solution obtained by BEM is compared with existing asymptotic solutions, obtained with both the open and the frictionless contact models. BEM results show that at the closest neighborhood to the crack tip the global solution of the problem is governed by the first term of the asymptotic solution of the frictionless contact model (up to a distance of the order of a fraction of the near-tip contact length). After a small transition region, in an adjacent surrounding zone whose extent is almost independent of the near-tip contact length, the global solution of the problem is governed by the first term of the asymptotic solution of the open model. As a result of the comparison presented, the regions in which the classical fracture parameters, stress intensity factor (SIF) and energy release rate, can be accurately obtained from the global numerical solution of a crack of this kind have been determined. Third, BEM results and previous estimations show certain discrepancies with a recently published closed form solution of the near-tip contact length and the mode II SIF of the frictionless contact model. A new closed form expression of this mode II SIF, derived from the asymptotic solution of the open model, is proposed in this paper.  相似文献   

20.
Fatigue crack growth rates have been experimentally determined for the superalloy GH2036 (in Chinese series) at an elevated temperature of 550 °C under pure low cycle fatigue (LCF) and combined high and low cycle fatigue (CCF) loading conditions by establishing a CCF test rig and using corner-notched specimens. These studies reveal decelerated crack growth rates under CCF loading compared to pure LCF loading, and crack propagation accelerates as the dwell time prolongs. Then the mechanism of fatigue crack growth at different loadings has been discussed by using scanning electron microscope (SEM) analyses of the fracture surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号