首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microcrystalline flaked graphites SFG6 and SFG44 were evaluated with regard to their compatibility with propylene carbonate (PC) by in situ Raman microscopy and postmortem scanning electron microscopy (SEM) study. PC is employed as electrolyte component in lithium-ion batteries. However, when used with certain types of graphitic materials, exfoliation occurs. To compare the effects of exfoliation, the first lithium insertion properties of these graphitic materials were measured with in situ Raman microscopy. Lithium half-cells containing either 1 M LiClO4 1:1 (w/w) ethylene carbonate (EC):dimethyl carbonate (DMC) or 1:1 (w/w) EC:PC were investigated. The commencement of the exfoliation process was detected in SFG44 EC:PC by the appearance of a shoulder band at 1597 cm−1 on the G-band (1584 cm−1) below 0.9 V versus Li/Li+. The band (assigned as the exfoliation or E-band) at higher wavenumbers (1597 cm−1) corresponded to solvated lithium ions intercalated into graphite. The in situ Raman spectra of SFG6 in EC:DMC or EC:PC and SFG44 in EC:DMC did not show the E-band and instead displayed regular lithium intercalation spectra.In situ Raman microscopy and SEM were further employed to study the exfoliation process observed for SFG44 in 1:1 (w/w) EC:PC, when the potential was held under steady-state conditions at 0.8, 0.6 and 0.3 V, respectively. A blue-shift in the E-band from 1597 to 1607 cm−1 was observed as the potential was lowered. SEM images showed dissimilar degrees of exfoliation at these three potentials.  相似文献   

2.
Thermally induced conformational changes that occur in high-density polyethylene (HDPE) crystal were studied by mid-infrared (MIR) spectroscopy. Spectral changes of four conformational “defect mode” bands in 1390-1280 cm−1 region were observed during the heating up to the melt. The spectra were analyzed by generalized two-dimensional (2D) correlation technique to elucidate correlations in their responses against temperature. Among the conformational defect bands, two bands at 1368 and 1308 cm−1 have traditionally been assigned to non-planar conformers of gtg′ (kink) and gtg. However, the present study shows the intensity increment of the band at 1368 cm−1 happens at a lower temperature than that of the band at 1308 cm−1. This finding is in favor of the assignment proposed by Cates et al., in which the 1368 cm−1 band is assigned to the gtg conformation excluding the involvement of kink. The spectral correlation among the band at 1368 (gtg), 1353 (double-gauche, gg′), and 1341 cm−1 (end-gauche, eg) has also been studied by 2D correlation analysis. As a result, it was found that the formation of gg′ and eg sequences mostly proceeds at a temperature range higher than 115 °C. The formation of gtg conformer sequence measured by the band at 1368 cm−1 apparently proceeds in two steps: the first at a temperature around 70 °C and the later one occurring at a temperature very close to Tm. The results of this study make correlation relationships clear in the temperature dependency of MIR bands due to conformational disorder sequences.  相似文献   

3.
This work reports on the kinetics of the hydrogen oxidation reaction (HOR) on model Pd nanoparticles supported on a low surface area carbon substrate. Two Pd/C samples, with the average particle size 2.6 and 4.0 nm were used. The structure of the catalysts was characterized with the ex situ (electron microscopy) and in situ (electrochemical) methods. We utilized the electrochemical impedance spectroscopy (EIS) and the rotating disk electrode (RDE) voltammetry to study the kinetics of the HOR on Pd/C. The relevance of these techniques for elucidating the kinetics and the mechanism of the HOR on Pd/C was explored. The experimental results suggest that the catalytic activity of Pd in the HOR is more than 2 orders of magnitude lower than that of Pt, and does not depend on the particle size in the range from 2.6 to 4.0 nm. Computational modeling of the experimental steady-state (RDE) and non-steady-state (EIS) data shows that the reaction kinetics can be adequately described within Heyrovsky-Volmer mechanism, with the rate constants υ0H = (8.8 ± 1.5) × 10−10 mol cm−2 s−1 and υ0V = (1.0 ± 0.3) × 10−8 mol cm−2 s−1. The model suggests that underpotentially deposited hydrogen HUPD is unlikely to be the active intermediate Had of the HOR. It is concluded that the surface coverage of Had deviates from that of HUPD with increasing overpotential, and the lateral interactions within Had adlayer are weak.  相似文献   

4.
Elecrochemical ATR-FTIRAS measurements were conducted for the first time to investigate nature of CO adsorbed under potential control on a highly dispersed Pt catalyst with average particle size of 2.6 nm supported on carbon black (Pt/C) and carbon un-supported Pt black catalyst (Pt-B). Each catalyst was uniformly dispersed by 10 μg Pt/cm2 and fixed by Nafion® film of 0.05 μm thick on a gold film chemically deposited on a Si ATR prism window. Adsorption of CO was conducted at 0.05 V on the catalysts in 1 and 100% CO atmospheres, for which CO coverage, θCO, was 0.69 and 1, respectively. Two well-defined ν(CO) bands free from band anomalies assigned to atop CO (CO(L)) and symmetrically bridge bonded CO (CO(B)sym.) were observed. It was newly found that the CO(L) band was spitted into two well-defined peaks, particularly in 1% CO, from very early stage of adsorption, which was interpreted in terms of simultaneous occupation of terrace and step-edge sites, denoted as CO(L)terrace and CO(L)edge, respectively. This simultaneous occupation was commonly observed in our work both on Pt/C and Pt-B. A new band was also observed around 1950 cm−1 in addition to the bands of CO(L) and CO(B)sym., which was assigned to asymmetric bridge CO, CO(B)asym., adsorbed on (1 0 0) terraces, based on our previous ECSTM observation of CO adsorption structures on (1 0 0) facet. The CO(B)asym. on the Pt/C, particularly in 100% CO atmosphere, results in growth of a sharp band at 3650 cm−1 accompanied by a concomitant development of a band around 3500 cm−1. The former and the latter are assigned to ν(OH) vibrations of non-hydrogen bonded and hydrogen bonded water molecules adsorbed on Pt, respectively, interpreted in term of results from a bond scission of the existing hydrogen bonded networks by CO(L)s and from a promotion of new hydrogen bonding among water molecules presumably by CO(B)asym..It was found that the frequency ν(CO) of CO(L) both on Pt/C and Pt-B is lower than that on bulky polycrystalline electrode Pt(poly) or different crystal planes of Pt single-crystal electrodes by 30-40 cm−1 at corresponding potentials, which implies a stronger electronic interaction between CO and Pt nano-particles and/or an increased contribution of step-edge sites on the particles. Determination of the band intensities of CO(L), CO(B)asym. and CO(B)sym. has led us to conclude a much higher bridged occupation of sites at Pt nano-particles than Pt(poly) electrodes.  相似文献   

5.
Hua-Xiao Yang 《Polymer》2009,50(6):1533-38
Water diffusion process in biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx, HHx = 12 mol%) was investigated by generalized 2D correlation time-resolved ATR-FTIR spectroscopy based on the analysis of v(OH) stretching and δ(OH) bending bands of water as well as v(CO) and v(C-O-C) stretching bands of PHBHHx. Three states of water were figured out during water diffusion process. They are bulk water, bound water and free water. The water diffusion mechanism was suggested as: water molecules firstly diffuse into the micro-voids in bulk water form or are dispersed on the surface in free water form, and then penetrate into the polymer matrix in hydrogen bound water with the hydrophilic groups of PHBHHx. Moreover, water molecules diffuse into the loose amorphous phase and then into compact crystalline phase. Water diffusion coefficient in PHBHHx was thus evaluated as 7.8 ± 0.7 × 10−8 cm2 s−1 for the PHBHHx with crystallinity of 16.2 ± 0.3% at 293 K.  相似文献   

6.
This study bridges the structure/composition of Pt-Co/C nanoparticles with their surface reactivity and their electrocatalytic activity. We show that Pt3Co/C nanoparticles are not stable during PEMFC operation (H2/air; j = 0.6 A cm−2, T = 70 °C) but suffer compositional changes at the nanoscale. In the first hours of operation, the dissolution of Co atoms at their surface yields to the formation of a Pt-enriched shell covering a Pt-Co alloy core (“Pt-skeleton”) and increases the affinity of the surface to oxygenated and hydrogenated species. This structure does not ensure stability in PEMFC conditions but is rather a first step towards the formation of “Pt-shell/Pt-Co alloy core” structures with depleted Co content. In these operating conditions, the Pt-Co/C specific activity for the ORR varies linearly with the fraction of Co alloyed to Pt present in the core and is severely depreciated (ca. −50%) after 1124 h of operation. This is attributed to: (i) the decrease of both the strain and the ligand effect of Co atoms contained in the core (ii) the changes in the surface structure of the electrocatalyst (formation of a multilayer-thick Pt shell) and (iii) the relaxation of the Pt surface atoms.  相似文献   

7.
Eisuke Okazaki 《Polymer》2010,51(19):4362-4367
The so-called “Super Salt-Resistive Gel”, i.e., poly(4-vinyl phenol) (P4VPh) hydrogel, of different water contents (H = 95-40%) was prepared by crosslinking with different amounts of ethylene glycol diglycidyl ether (EGDGE). FT-IR spectroscopy was used to investigate the hydration and hydrogen bond (HB) properties of water in the gel samples. The OH stretching band around 3300 cm−1 was deconvoluted into four sub-bands. On the basis of the relative band area and the peak wave number, it was suggested that HB of water in the gel is most stabilized when the acidic proton of the phenol residue is intact, being free from the chemical crosslinking. Difference spectra for the water band obtained in the presence of salts suggested that only sulfate systems specifically affect polymer hydrations in the gel phase. The sulfate systems were also specific in the perturbation on the main chain CH2 stretching band; namely, with increasing the salt concentration, the peak showed a significant blue shift, which means that the hydrophobic hydration is stabilized by the typical salting-out divalent anion. All the experimental results on the FT-IR spectroscopy for the P4VPh hydrogel seem to be consistent with our previous 1H NMR data on the water T2 (Sakai Y, Kuroki S, Satoh M. Langmuir 2008; 24:6981-7.) as well as the specific stabilization of water (HB and hydration) in the gel that has been suggested on the basis of the swelling behavior.  相似文献   

8.
Boron incorporation from the gas phase was achieved in MPCVD grown (100)-oriented homoepitaxial diamond layers, either with or without a small fraction of oxygen in the gas phase, in addition to hydrogen, methane and diborane. From secondary Ion Mass Spectroscopy (SIMS), it is shown that the 0.25% of oxygen decreases the Boron concentration [B] by two orders of magnitude. In this way, we demonstrate that it becomes possible to control [B] with low levels of compensation and passivation down to the 1015 cm− 3 range. Cathodoluminescence spectroscopy is systematically performed in seventeen samples under a 10 kV acceleration voltage at 5 K and the exciton bound to boron (BETO) intensity to the free exciton (FETO) intensity ratio is evaluated (IBETO/IFETO). A linear relationship between IBETO/IFETO and [B] with a coefficient of 3.5 × 1016 cm− 3 is demonstrated for [B] < 3 × 1017 cm− 3 in single crystalline diamond, irrespective of the gas phase composition during growth.  相似文献   

9.
To use the protonic mesothermal fuel cell without humidification, mass transportation in diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]), trifluoromethanesulfuric acid (TfOH)-added [dema][TfO], and phosphoric acid (H3PO4)-added [dema][TfO] was investigated by electrochemical measurements. The diffusion coefficient and the solubility of oxygen were ca. 10−5 cm2 s−1 and ca. 10−3 M (=mol dm−3), respectively. Those of hydrogen were a factor of 10 and one-tenth compared to oxygen, respectively. The permeability, which is a product of the diffusion coefficient and solubility, of oxygen and hydrogen were almost the same for the perfluoroethylenesulfuric acid membrane and the sulfuric acid solution; therefore, these values are suitable for fuel cell applications. On the other hand, a diffusion limiting current was observed for the hydrogen evolution reaction. The current corresponded to ca. 10−10 mol cm−1 s−1 of the permeability, and the diffusion limiting species was the hydrogen carrier species. The TfOH addition enhanced the diffusion limiting current of [dema][TfO], and the H3PO4 addition eliminated the diffusion limit. The hydrogen bonds of H3PO4 or water-added H3PO4 might significantly enhance the transport of the hydrogen carrier species. Therefore, [dema][TfO] based materials are candidates for non-humidified mesothermal fuel cell electrolytes.  相似文献   

10.
ATR-FTIRAS measurements were conducted to investigate nature of water molecules co-adsorbed with CO on highly dispersed PtRu alloy and Pt catalysts supported on carbon black in the temperature range between 23 °C and 60 °C. Each catalyst was uniformly dispersed and fixed by Nafion® film of 0.0125 μm thickness on a chemically deposited gold film. Adsorption of CO was conducted and monitored by ATR-FTIRAS for 30 min in 1% CO saturated 0.1 M HClO4 after stepping the potential from 1.2 V and 1.0 V to 0.05 V on Pt/C and PtRu/C, respectively. Similar atop and bridge bonded CO bands were observed on both PtRu/C and Pt/C, but a smaller relative band intensity, bridge bonded vs. atop CO, was observed on PtRu/C compared to Pt/C. A distinct O-H stretching band was found around 3643 cm−1 and 3630 cm−1 on PtRu/C and Pt/C, respectively, upon CO adsorption. They are assigned to non-hydrogen bonded water molecules co-adsorbed with CO on these catalysts. We found that the number of non-hydrogen bonded water molecules co-adsorbed with a given number of CO molecules decreases with increasing temperature and is higher on PtRu/C than Pt/C at each temperature. We interpret the higher ability of water co-adsorption at PtRu/C over Pt/C is due to stronger H2O-metal interactions on the alloy surface. We present a model of the CO-H2O co-adsorbed layer based on the bilayer model of water on metal surfaces.  相似文献   

11.
The electro-oxidation of CO adlayer on Pt electrode in Cl-containing 0.1 M HClO4 has been investigated with in situ attenuated-total-reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). Two potentials were selected for predosing CO on the Pt electrode: one is in the H-UPD region, i.e., 0.1 V (vs. RHE) and the other is in the double-layer region, i.e., 0.45 V (vs. RHE). The broadening of the prewave and the main peak for the CO oxidation is observed, in addition to the positively shifted oxidation potentials. The spectroelectrochemical data suggest the specific adsorption of Cl starts at a potential as negative as 0.1 V which may compete with the adsorption of OH at CO-unoccupied sites (including but not limited to defect sites) and/or hinder the diffusion of CO to OH adsorption sites on Pt electrode, slowing down the CO oxidation. This competitive Cl adsorption at lower potentials disrupts the interfacial free H2O structure on the top of CO adlayer, signaled by a reduced OH stretching band intensity.  相似文献   

12.
Polyiodides (Ix, x = 3 and 5) and 2I…I2 adducts were established from the Raman spectra study of 1-methyl-3-propylimidazolium iodide (MPIm+Ix; 1 ≤ x ≤ 5) ionic liquids containing various amounts of iodine (0 mol ≤ I2 ≤ 2 mol). The existence of I3 and 2I…I2 was established for 1 ≤ x ≤ 2.5, symmetric I3 ions for x = 3, while linear and discrete I5 was substantiated for 3 ≤ x ≤ 5. The presence of polyiodide species in MPIm+Ix (1 ≤ x ≤ 5) was correlated with an enhanced ionic conductivity, attributed to the established relay-type Grotthus mechanism. Two-step conductivity increase was also reflected in decrease of the hydrogen bond interactions between the CH ring groups and polyiodides. While in the concentration range 1 ≤ x ≤ 3 (triiodides and tetraiodides) IR bands changed only slightly in intensity, in the concentration range x > 3 the CH stretching bands (3040-3170 cm−1) split and the new band at 1585 cm−1 appeared in the IR spectra beside the already existing Im+ ring stretching mode at 1566 cm−1.  相似文献   

13.
Shin Watanabe  Isao Noda 《Polymer》2008,49(3):774-784
Thermally induced structural and conformational changes in polyethylene (PE) samples were explored by using near-infrared (NIR) spectroscopy. The differences in the temperature-dependent structural disordering process among six PE samples were depicted by monitoring the intensities of NIR bands characteristic of orthorhombic crystalline phase. The temperature dependency of bands in the NIR region that have been considered to be due to orthorhombic crystalline lattice was compared to that of a band at 1378 cm−1 due to the methyl symmetric bending mode. The intensity decrease of the band in the mid-infrared (MIR) region seems to sensitively reflect the overall disordering of orthorhombic crystalline structure. As a result of this study, the intensity decrease of the bands in the NIR spectral region was found to proceed at lower temperature than that of the band at 1378 cm−1. This finding suggests the status of orthorhombic crystalline structure probed by the intensity of the band at 1378 cm−1 and that by the “crystalline” bands in the NIR spectral region may not be identical. The NIR spectra were further analyzed by two-dimensional (2D) correlation spectroscopy to provide the in-depth analysis of NIR bands. The 2D correlation spectroscopy has detected the presence of two NIR bands at 4342 and 4290 cm−1 due to orthorhombic crystalline phase and those at 5840 and 5640 cm−1 due to amorphous phase. The hetero-spectral 2D correlation analysis was carried out between the NIR spectral region of 4365-4240 cm−1 and the well-established MIR spectral region for CH2 wagging deformation region of 1390-1240 cm−1, where bands due to nonplanar conformer are detected. This approach allowed us to determine NIR bands, which behave in a way similar to MIR bands originating from conformational defect sequences that exist in the orthorhombic crystalline lattice, the amorphous domain and the chain fold regions. As a result of the hetero-spectral 2D NIR-MIR correlation spectroscopic studies on the development of conformational defect sequence in three types of PE samples, it was concluded that the intensity of a band at 4265 cm−1 changes in the same manner as the MIR bands at 1368, 1353 and 1308 cm−1 assignable to gtg, gg and gtg′ (kink) conformations. This finding means that the state of conformational disorder in PE crystal can be studied by monitoring the intensity of the NIR band at 4265 cm−1. The use of NIR spectroscopy makes it possible to directly probe the degree in the formation of conformational defect sequences in thick PE products typically produced in industry, which cannot be studied by MIR spectroscopy. This paper thus provides in-depth fundamental understandings on NIR spectra of PE as well as the results of our study regarding structural and conformational changes in PE crystals probed by NIR spectroscopy.  相似文献   

14.
The performance of proton exchange membrane fuel cells (PEMFC) fed with CO-contaminated hydrogen was investigated for anodes with PtWOx/C and phosphotungstic acid (PTA) impregnated Pt/C electrocatalysts. A quite high performance was achieved for the PEMFC fed with H2 + 100 ppm CO with anodes containing 0.4 mg PtWOx cm−2 and also for those with 0.4 mg Pt cm−2 impregnated with ca. 1 mg PTA cm−2. A decay of the single cell performance with time is observed, and this was attributed to an increase of the membrane resistance due to the polymer degradation promoted by the crossover of the tungsten species throughout the membrane.  相似文献   

15.
Self-assembled monolayers of dodecanethiol (C12SH-SAMs) on polycrystalline gold were prepared under ultrasonic irradiation at 100 W (the actual ultrasonic power intensity is about 0.1 W cm−2 including the heat loss) for different time and investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). CV experiments show that the differential capacitance Cd values of the C12SH-SAM prepared under ultrasonic irradiation at 100 W (0.1 W cm−2) for 15 min are independent of the scan rate, the thickness d value of this monolayer is 17.5 Å, the tilt angle φ value of the molecules in this monolayer from the gold surface normal was calculated to be 30° and the difference value of the current density at −0.2 and 0.5 V (Δip) is only 0.69 μA cm−2. From the EIS experiments, we find that the phase angle value at 1 Hz Φ1 Hz of the C12SH-SAM prepared under ultrasonic irradiation at 100 W (0.1 W cm−2) for 15 min is 89°, the charge transfer resistance Rct value of this monolayer is 1.40 × 106 Ω cm2 and the surface coverage θ value of this monolayer was calculated to be 99.997% from Rct. These results indicate that the C12SH-SAM of almost defect-free structure and very low ionic permeability can be formed under ultrasonic irradiation at 100 W (0.1 W cm−2) in a short time (15 min).  相似文献   

16.
We report on the use of the polyoxometalate acids of the series [PMo(12 − n)VnO40](3 + n)− (n = 0-3) as electrocatalysts in both the anode and the cathode of polymer-electrolyte membrane (PEM) fuel cells. The heteropolyacids were incorporated as catalysts in a commercial gas diffusion electrode based on Vulcan XC-72 carbon which strongly adsorbed a low loading of the catalyst, ca. 0.1 mg/cm2. The moderate activity observed was independent of the number of vanadium atoms in the polyoxometalate. In the anode the electrochemistry is dominated by the V3+/4+ couple. With a platinum reference wire in contact with the anode, polarization curves are obtained withVOC of 650 mV and current densities of 10 mA cm−2 at 100 mV at 80 °C. These catalysts showed an order of magnitude more activity on the cathode after moderate heat treatment than on the anode,VOC = 750 mV, current densities of 140 mA cm−2 at 100 mV. The temperature dependence of the catalysts was also investigated and showed increasing current densities could be achieved on the anode up to 139 °C and the cathode to 100 °C showing the potential for these materials to work at elevated temperatures.  相似文献   

17.
Transparent and highly conducting (10−3 S cm−1) composite gel electrolytes (cges) based on poly(methylmethacrylate) (PMMA) with 1 M LiClO4 in propylene carbonate (PC) and hydrophilic fumed silica (SiO2) added in different proportions up to 5 wt.% as the constituents were prepared. The unique property of the aggregates of surface hydroxyl groups of hydrophilic fumed silica to link together through hydrogen bonding to form a network and the interactions between various constituents, probed by FTIR spectroscopic technique, have revealed to control both the transport and rheological properties of the cges. The high mechanical and electrochemical stability of these cges makes them potential candidates as electrolytes in “All Solid State Electrochromic Windows” (ECWs). Detailed room temperature conductivity and viscosity measurements correlated to FTIR spectroscopic analysis of cges along with their optical and electrochemical investigations is reported in the present paper.  相似文献   

18.
A.C. Rastogi  S.B. Desu 《Polymer》2005,46(10):3440-3451
Formation of fluorocarbon polymer films with a linear (CF2-CF2)n molecular structure similar to polytetrafluoroethylene, PTFE is described by a hot filament chemical vapor deposition method. Growth process is analyzed by infrared absorption and C(1s), O(1s) and F(1s) core level electron spectroscopy of films deposited at −5 and +70 °C. Absorption doublet at 1220 and 1160 cm−1 assigned to C-F2 asymmetric and symmetric stretches, rock at 518 cm−1 and wag at 637 cm−1 indicate formation of linearly organized CF2 groups with minimum hindrance to molecular vibration modes in CVD grown films. Absorption bands at 1660 and 3389 cm−1 show O and OH groups in the films which diminish on annealing. The C(1s) components, CF3, CF and C-CF bonding show branching, cross-liking and defects sites which increase as substrate temperature is increased. The O(1s) line analysis shows O2 in fluorocarbon films is chemically bonded as C-O and F2CO with relative ratio depending on the film growth temperature. Both O2 and OH are the result of additional reaction pathways involving the species generated from fragmentation of CF3C(O)F. Molecular structure of fluorocarbon polymer films involving these species are discussed which are in conformity with the XPS and IR absorption data.  相似文献   

19.
20.
We have developed novel cross-linked sulfonated polyimide (c-SPI) membrane as an electrolyte for direct methanol fuel cells (DMFCs). When the DMFC using the c-SPI membrane (thickness = 155 μm), Pt-Ru dispersed on carbon black (Pt-Ru/CB) anode and Pt/CB cathode with a Nafion® ionomer was operated at 80 °C and 0.1 A cm−2 with 1 M CH3OH and oxygen (oxidant), the methanol crossover rate, j(CH3OH), was suppressed to about 1/2 compared with that of the Nafion® 117 membrane (thickness = 180 μm) with the same electrodes. It was found for both cells that the j(CH3OH) was not so small as expected from the membrane thickness. In order to obtain a clue for the suppression of j(CH3OH), the distribution profiles of water (containing CH3OH) in thickness direction were investigated by measuring the specific resistances (ρ) between Pt probes inserted into the electrolyte membrane. Values of ρ at the anode side were low irrespective of the discharge current density, because such a part of the membrane was humidified thoroughly by liquid water (1 M CH3OH) allowing free penetration of CH3OH into the swollen polymer. In contrast, the values of ρ at the cathode side were high at the low current density due to drying of the membrane contacting with oxidant gas (O2 or air) in low humidity. We have succeeded to suppress the j(CH3OH) further (about 1/2 at 0.2 A cm−2) by using bilayer c-SPI, having a low ion exchanging (low swelling) barrier layer at the anode side without increasing the ohmic resistance, compared with that of the single c-SPI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号