首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress fields on elastic-creep bi-material interfaces with different geometry of the interface edge are analyzed by finite element method. The results reveal that the stress highly concentrates near the interface edge at the loading instant and it gradually decreases as the creep-dominated zone expands from the small-scale creep to the large-scale creep. The stress singularity due to creep which resembles the HRR stress singularity appears near the interface edge in all cases. The stress intensity near the interface edge time-dependently decreases and becomes constant when the transition reaches the steady state. The magnitude is scarcely influenced by the edge shape of elastic material, though it depends on the edge shape of creep material. The stress intensity during the transition can be approximately predicted by the J-integral at the loading instant.  相似文献   

2.
A method using functions of a complex variable is developed for evaluation of J1 and a modified J2 integrals for bi-material interface cracks. This method, used in conjunction with the finite element method, would be useful in the prediction of stress intensity factors for cracks lying between the interface of two dissimilar materials. Since the direct evaluation of J2 poses difficulties in modeling the singular behavior in the near vicinity around the crack tip for bi-material crack problems, it is modified by evaluating it around a contour path of small radius from the crack tip within the singularity dominated zone. It is shown that the stress intensity factors for a bi-material interface crack can be accurately evaluated using these jk integrals.  相似文献   

3.
Delamination tests using sandwich type specimens are conducted for eight combinations of materials: thin films formed on silicon substrates which are relatively popular in micro-electronic industry, to develop a method for quantitative evaluation and comparison of crack initiation strength at the free edge. The difficulty stems from the difference of stress singularity, Kij/rλ (Kij: stress intensity, r: distance from free edge and λ: order of stress singularity), where λ is depending on the combination of materials. Thus, the critical Kij has different dimensions, MPa mλ, in each interface. Using the experimentally observed delamination load, the stress distribution along the interface is analyzed by boundary element method. Since the orders of stress singularity, λ, in the materials are less than 0.07 (weak singularity), the stress field near the interface edge is almost constant in atomic (nanometer) level. Then, the critical strength for the interface cracking is quantitatively represented by the concentrated stress near the edge. The effects of the several factors such as species of thin films, oxidized interlayers and deposition processes of thin films on the interface strength are evaluated on the basis of this critical stress as well.  相似文献   

4.
The purpose of this study is to examine the stress distribution near the interface between a nanostructured thin film and a solid body. We focus on a nanostructured thin film that consists of Ta2O5 helical nanosprings fabricated on a Si substrate by dynamic oblique deposition. The mechanical properties of the thin film are obtained by vertical and lateral loading tests using a diamond tip built into an atomic force microscope. The apparent shear and Young’s moduli, G′ and E′, of the thin film are 2-3 orders of magnitude lower than those of a conventional solid Ta2O5 film. Moreover, the thin film shows strong anisotropy. A finite element analysis for two types of components with different interface edges between the thin film and an elastic solid body is conducted under uniform displacement. One has a free edge where the surface-interface angle is 90°-90°, and the other has a short interface crack. These analyses indicate the absence of not only stress singularity but also high stress concentration near the free edge and the interface crack tip. The characteristic stress distributions near the interface are due to the nanoscopically discrete structure of the thin film.  相似文献   

5.
In order to examine the mechanics of crack initiation at the free interface edge of a microcomponent on a substrate, delamination tests are carried out for two specimen shapes of Cr microdots on a SiO2 substrate. The microdots of the first specimen are shaped like the frustum of a round cone. The Cr microdots are successfully delaminated from the SiO2 substrate in a brittle manner and the critical load is measured by atomic force microscopy (AFM) with a lateral loading apparatus. Stress analysis reveals that a singular stress field exists near the interface edge and the strength for the crack initiation is governed by the intensified normal stress field. The critical stress intensity parameter is evaluated as KσC ≈ 0.24 MPa m0.39. Similar delamination tests are conducted for microdots shaped like the frustum of an oval cone. The stress distributions at the crack initiation of this specimen shape show a higher normal stress than the first specimen shape in the region near the interface edge of about x < 40 nm, while it is lower in the region of about x > 50 nm (x: distance from the edge). This suggests a limitation of conventional fracture mechanics: namely, the crack initiation in these specimens is not uniquely governed by the intensity of the singular field. It is found that the delamination crack is initiated when the averaged stress σya in the region of 90-130 nm reaches 190-270 MPa, regardless of the specimen shape. This indicates that the dominant stress region of crack initiation is roughly estimated as 90-130 nm and the criterion is given in terms of the averaged stress in the region.  相似文献   

6.
The undulant interface of a bi-material, which is due to manufacturing or instability under high stress, may provide certain preferred places where microdefects accumulate. In the present paper, an edge dislocation near a slightly wavy interface is studied via a regular perturbation scheme. Stress investigation for the interaction between the edge dislocation and the wavy bi-material interface has been carried out. The Peach-Koehler force on the dislocation is calculated from the first perturbed solution of the stress fields. The influence of several key parameters, such as the Dundurs bi-material interface constants α, β, the distance of the dislocation to the interface, the wavy extent of the interface, etc., on the behavior of the dislocation has been analyzed. The numerical examples indicate that there are certain “equilibrium” points around which the dislocations are expected to be accumulated. In turn, microdefects, such as microcracks and microvoids, may be initiated near these sites. Results obtained can be applied to study crack initiation or delamination along bonded bi-material interfaces.  相似文献   

7.
This paper illustrates an efficient contour integral procedure to obtain stress intensity factors in combination of the asymptotic analysis with finite element analysis. Note that this set-up is very general: the material can be anisotropic elastic, and the specimen can be built as a bi-material system, notches of arbitrary opening angle can be analyzed (γ = 0 → crack, γ = 180° → free edge).The purpose of this technical note is to comment on three issues in the notch mechanics: the interpretation of the eigenvalue equation, the definition of stress intensity factors, and the effect of the outer contour location on H-integral evaluations.  相似文献   

8.
By considering an isotropic elastic dielectric material as a transversely isotropic piezoelectric material with little piezoelectricity, the interface crack problem in elastic/piezoelectric bimaterials is treated in this paper based on Stroh's complex potential theory (1958) with the impermeable crack model. In order to obtain universal results, Numerical results of the near tip stress field and the electric field for 35 kinds of dissimilar bimaterials constructed by five kinds of elastic dielectric materials, namely Epoxy, Polymer, Al2O3, SiC and Si3N4, and seven kinds of piezoelectric ceramics, namely PZT-4, BaTiO3, PZT-5H, PZT-6B, PZT-7A, P-7, and PZT-PIC151, are presented. It is concluded that all the combinations lead to the same results: in which the first crack tip singularity parameter does not vanish whereas the second parameter always vanishes. From the physical point of view, an interface crack in such a dissimilar material shows a similar oscillating singularity as that in dissimilar elastic bimaterials. Moreover, by using a maximization value technique, the regular inverse square root singularity r –1/2 of the stress and the electric field at the crack tip can be realized, although, theoretically, an interface crack in such bimaterials possesses the well-known oscillating singularity r –1/2± i. Of great significance is that, in the absence of mechanical loadings, a purely electric loading can induce relative large model I or II stress intensity factor for a interface crack in some elastic/piezoelectric bimaterials, which implies that the electric-induced failure may be realized in such bimaterials.  相似文献   

9.
The quadratic isoparametric crack‐tip elements proposed by R. E. Abdi and G. Valentin (Computers and Structures 33, 241–248) are reconsidered and a simpler method for calculating the optimal position of the side nodes proposed. Quadratic isoparametric transition elements for an rλ−1 (0<λ<1) strain singularity are formulated. The effects of these transition elements on the accuracy of the calculated stress intensity factors are shown numerically for a crack normal to and terminating at a bimaterial interface. Finally, layered transition elements are formulated for this case and their effects studied numerically. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
The stress fields near the tip of a matrix crack terminating at and perpendicular to a planar interface under symmetric in-plane loading in plane strain are investigated. The bimaterial interface is formed by a linearly elastic material and an elastic power-law creeping material in which the crack is located. Using generalized expansions at the crack tip in each region and matching the stresses and displacements across the interface in an asymptotic sense, a series asymptotic solution is constructed for the stresses and strain rates near the crack tip. It is found that the stress singularities, to the leading order, are the same in each material; the stress exponent is real. The oscillatory higher-order terms exist in both regions and stress higher-order term with the order of O(r°) appears in the elastic material. The stress exponents and the angular distributions for singular terms and higher order terms are obtained for different creep exponents and material properties in each region. A full agreement between asymptotic solutions and the full-field finite element results for a set of test examples with different times has been obtained.  相似文献   

11.
This study focuses on a delamination between two layers of a fiber-reinforced composite material oriented in the directions θ/(θ − 90°). Two specific interfaces are examined: the +30°/−60° interface and −30°/+60° interface. The delamination in these cases is treated effectively as a crack between two monoclinic materials. The behavior of the stress and displacement fields near the crack tip is studied. The first term of the asymptotic expansion for the stress and displacement fields are found by means of the Stroh and Lekhnitskii formalisms. A general solution is obtained for an interface crack in the x2 = 0 plane. The crack is between two monoclinic materials with x2 = 0 a symmetry plane.In order to calculate the stress intensity factors, a three-dimensional interaction energy or conservative M-integral is extended and implemented in conjunction with the finite element method. For the M-integral, the auxiliary fields used are particular cases of the stress and displacement fields obtained earlier. The displacement extrapolation method is also extended for this case. The crack surface displacements obtained from a finite element analysis are employed. The methods are independent of each other; hence, they may be used for validation of the results determined.Three test cases are analyzed to examine the accuracy of the results obtained by means of the M-integral method. In addition, two problems of a central crack in a symmetric composite under different loadings are solved. Those loadings are tension and in-plane shear. Stress intensity factors and the interface energy release rate are obtained along the crack front for all cases.  相似文献   

12.
The Airy stress eigenfunction expansion of Williams [1] has been used to obtain simple expressions for the angular variations of the stress and displacement fields for n-material wedges and junctions subjected to inplane loading. This formulation applies to real and complex roots, as well as the special transition case giving rise to r singular behavior. The asymptotic behavior of the general problem is similar to that of the bi-material interface crack. In the case of real roots, the stress and displacement expressions can be determined to within a multiplicative real constant (amplification), while for the complex case, the fields are determined to within a multiplicative complex constant (amplification plus rotation). Because of the rotation in the complex case, there are an infinite number of equivalent ways to express the angular variations (eigenfunctions) of the stress and displacement fields. Therefore, the fields are standardized in terms of generalized stress intensity factors that are consistent with the bi-material interface crack and the homogeneous crack problems. As in the bi-material crack problem, for the complex case there are two stress intensity factors for each admissible order of the stress singularity. For specific n-material wedges and junctions, a small variation of material properties and/or geometry can change the eigenvalues from a pair of complex conjugate roots to two distinct real roots or vice-versa. An r singularity associated with a nonseparable solution in and exists at this point of bifurcation. Such behavior requires an adjustment in the standard eigenfunction approach to insure bounded stress intensity factors. The proper form of the solution is given both at and near this special material combination, and the smooth transition of the eigenfunctions as the roots change from real to complex is demonstrated in the results. Additional eigenfunction results are provided for particular cases of 2 and 3-material wedges and junctions.  相似文献   

13.
The analytical solution for the linear elastic, axisymmetric problem of inner and outer edge cracks in a transversely isotropic infinitely long hollow cylinder is considered. The z = 0 plane on which the crack lies is a plane of symmetry. The loading is uniform crack surface pressure. The mixed boundary value problem is reduced to a singular integral equation where the unknown is the derivative of the crack surface displacement. An asymptotic analysis is done to derive the generalized Cauchy kernel associated with edge cracks. It is shown that the stress intensity factor is a function of three material parameters. The singular integral equation is solved numerically. Stress intensity factors are presented for various values of material and geometric parameters.  相似文献   

14.
A penny-shaped crack at the interface of a piezoelectric bi-material system is considered. Analytical general solutions based on Hankel integral transforms are used to formulate the mixed-boundary value problem corresponding to an interfacial crack and the problem is reduced to a system of singular integral equations. The integral equations are further reduced to two systems of algebraic equations with the aid of Jacobi polynomials and Chebyshev polynomials. Thereafter, the exact expressions for the stress intensity factors and the electric displacement intensity factor at the tip of a crack are obtained. Selected numerical results are presented for various bi-material systems to portray the significant features of crack tip fracture parameters and their dependence on material properties, poling orientation and electric loading.  相似文献   

15.
The problem of a crack in a thin layer terminating perpendicular to a layer/substrate interface is analyzed for a general case of elastic anisotropy. The crack is modelled by means of continuous distribution of dislocations, which is assumed to be singular at the crack tip. A system of simultaneous functional equations is obtained that enables to find the singularity exponent λ. The reciprocal theorem (ψ-integral) is used to compute the generalized stress intensity factor (GSIF) through the remote stress and displacement field for a particular specimen geometry and boundary conditions using FEM. The results obtained are compared with the evaluation of GSIF based upon the dislocation arrays technique. Existing semi-analytical solution for singularities in anisotropic trimaterials is applied and its validity for the specimen investigated is checked by FEM. The evaluation of T-stress using the dislocation arrays technique is performed.  相似文献   

16.
This paper describes an interface element to calculate the strain energy release rates based on the virtual crack closure technique (VCCT) in conjunction with finite element analysis (FEA). A very stiff spring is placed between the node pair at the crack tip to calculate the nodal forces. Dummy nodes are introduced to extract information for displacement openings behind the crack tip and the virtual crack jump ahead of the crack tip. This interface element leads to a direct calculation of the strain energy release rate (both components GI and GII) within a finite element analysis without extra post-processing. Several examples of stationary cracks under impact loading were examined. Dynamic stress intensity factors were converted from the calculated transient strain energy release rate for comparison with the available solutions by the others from numerical and experimental methods. The accuracy of the element is validated by the excellent agreement with these solutions. No convergence difficulty has been encountered for all the cases studied. Neither special singular elements nor the collapsed element technique is used at the crack tip. Therefore, the fracture interface element for VCCT is shown to be simple, efficient and robust in analyzing crack response to the dynamic loading. This element has been implemented into commercial FEA software ABAQUS® with the user defined element (UEL) and should be very useful in performing fracture analysis at a structural level by engineers using ABAQUS®.  相似文献   

17.
In this study growth behavior of bridged cracks, resulting from the growth of pre-nucleated creep cavities with diffusional and dislocation-assisted mechanisms, is investigated numerically. The elements bridging the crack are assumed to be elastic; the bridging behavior ranges from full development of the bridging zones to failure of the bridging elements during the course of crack growth. The results indicate that the bridging traction significantly relaxes even with the overall creep deformation alone. The rate of this relaxation is not influenced by the rate of crack growth. However, the rate of change in the bridging zone length or the density of the bridging elements in the bridging zone strongly affects both the maximum value and the distribution of the traction in the bridging zone. A much weaker stress singularity than the ones described by K or C* was found ahead of the bridged cracks in the creep regime. In this weak singularity region the cavities, located at increasing distance from the crack tip, grow at similar high rates to each other.  相似文献   

18.
It is generally accepted that the fatigue crack growth (FCG) depends mainly on the stress intensity factor range (ΔK) and the maximum stress intensity factor (Kmax). The two parameters are usually combined into one expression called often as the driving force and many various driving forces have been proposed up to date. The driving force can be successful as long as the stress intensity factors are appropriately correlated with the actual elasto-plastic crack tip stress-strain field. However, the correlation between the stress intensity factors and the crack tip stress-strain field is often influenced by residual stresses induced in due course.A two-parameter (ΔKtot, Kmax,tot) driving force based on the elasto-plastic crack tip stress-strain history has been proposed. The applied stress intensity factors (ΔKappl, Kmax,appl) were modified to the total stress intensity factors (ΔKtot, Kmax,tot) in order to account for the effect of the local crack tip stresses and strains on fatigue crack growth. The FCG was predicted by simulating the stress-strain response in the material volume adjacent to the crack tip and estimating the accumulated fatigue damage. The fatigue crack growth was regarded as a process of successive crack re-initiations in the crack tip region. The model was developed to predict the effect of the mean and residual stresses induced by the cyclic loading. The effect of variable amplitude loadings on FCG can be also quantified on the basis of the proposed model. A two-parameter driving force in the form of: was derived based on the local stresses and strains at the crack tip and the Smith-Watson-Topper (SWT) fatigue damage parameter: D = σmaxΔε/2. The effect of the internal (residual) stress induced by the reversed cyclic plasticity manifested itself in the change of the resultant (total) stress intensity factors controlling the fatigue crack growth.The model was verified using experimental fatigue crack growth data for aluminum alloy 7075-T6 obtained under constant amplitude loading and a single overload.  相似文献   

19.
The singular stress field at the interface-corner of a bi-material scarf joint is analysed for a strip of finite width, w, under remote tension and bending. The two substrates are taken as linear elastic and isotopic. The intensity of the singular stress field is calculated using a domain integral method, and is plotted as a function of joint geometry and material mismatch parameters. It is envisaged that the intensity of singularity can serve as a valid fracture criterion provided the zone of nonlinearity is fully embedded within the singular elastic field. It is assumed that fracture initiates when the magnitude of the corner singularity attains a critical value; consequently, the fracture strength of the joint depends upon the size of the structure. In addition, the interfacial stress intensity factor and the associated T-stress are determined for an edge interfacial crack. When the crack is short with respect to the width of the strip, the stress intensity factor is dominated by the presence of the corner singularity; a boundary layer formulation is used to determine the coupling between the crack tip field and the interface-corner field. The solution suggests that an interfacial crack grows unstably with a rapidly increasing energy release rate, but with only a small change in mode mix. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Based on the existing asymptotic solutions of the displacement and singular stress fields in the vicinity of a singular point in 2D orthotropic elastic materials, the two simple eigenequations are explicitly given for the symmetric and anti-symmetric deformation modes to determine the orders of the stress singularity at the interface corner in orthotropic bi-materials, respectively. The related displacement and singular stress fields near the interface corner are also explicitly established. The relevant stress intensity factors are defined as in the case of crack problems. The theoretical results have been confirmed by numerical, finite-element-based results in a special bi-material case. The solution obtained in this paper may be applied to the interface corner in the orthotropic/orthotropic, orthotropic/isotropic, and isotropic/isotropic bi-materials, and it will be very useful to evaluate the strength of the bonded orthotropic bi-materials with interface corners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号