共查询到20条相似文献,搜索用时 15 毫秒
1.
A boron-doped carbon nanotube (BCNT)-modified glassy carbon (GC) electrode was constructed for the detection of l-cysteine (L-CySH). The electrochemical behavior of BCNTs in response to l-cysteine oxidation was investigated. The response current of L-CySH oxidation at the BCNT/GC electrode was obviously higher than that at the bare GC electrode or the CNT/GC electrode. This finding may be ascribed to the excellent electrochemical properties of the BCNT/GC electrode. Moreover, on the basis of this finding, a determination of L-CySH at the BCNT/GC electrode was carried out. The effects of pH, scan rate and interferents on the response of L-CySH oxidation were investigated. Under the optimum experimental conditions, the detection response for L-CySH on the BCNT/GC electrode was fast (within 7 s). It was found to be linear from 7.8 × 10−7 to 2 × 10−4 M (r = 0.998), with a high sensitivity of 25.3 ± 1.2 nA mM−1 and a low detection limit of 0.26 ± 0.01 μM. The BCNT/GC electrode exhibited high stability and good resistance against interference by other oxidizable amino acids (tryptophan and tyrosine). 相似文献
2.
Poly(γ-benzyl l-glutamate)-block-poly(l-phenylalanine) was prepared via the ring opening polymerization of γ-benzyl l-glutamate N-carboxyanhydride and l-phenylalanine N-carboxyanhydride using n-butylamine·HCl as an initiator for the living polymerization. Polymerization was confirmed by 1H-nuclear magnetic resonance spectroscopy and matrix assisted laser desorption ionization time of flight mass spectroscopy. After deprotection, the vesicular nanostructure of poly(l-glutamic acid)-block-poly(l-phenylalanine) particles was examined by transmission electron microscopy and dynamic light scattering. The pH-dependent properties of the nanoparticles were evaluated by means of ζ-potential and transmittance measurements. The results showed that the block copolypeptide could be prepared using simple techniques. Moreover, the easily prepared PGA-PPA block copolypeptide showed pH-dependent properties due to changes in the PGA ionization state as a function of pH; this characteristic could potentially be exploited for drug delivery applications. 相似文献
3.
Catalytic activity of cobalt tetra ethoxythiophene and cobalt tetra phenoxypyrrole phthalocyanine complexes towards oxidation of 2-mercaptoethanol, l-cysteine and reduced glutathione is reported. It was found that the activity of the complexes depends on the substitution of the phthalocyanine ring, pH, film thickness and method of electrode modification. The high electrocatalytic activity obtained with adsorbed complexes in alkaline medium clearly demonstrates the necessity of modifying bare carbon electrodes to endow them with the desired behaviour. 相似文献
4.
We report on the electrocatalytic activity of immobilized coenzyme B12 and vitamin B12 (as aquocobalamin) for the electrooxidation of l-cysteine and their effects on the electrochemical reversibility of the l-cysteine/l-cystine redox couple, a crucial biological system. Cyclic voltammograms of coenzyme B12 adsorbed on a graphite electrode show that upon the reductive elimination of the 5′-deoxyadenosyl group from the cobalt center, at approximately −1.1 V, the electrochemical response of the modified electrode becomes similar to that of aquocobalamin. The electrochemically pretreated coenzyme B12 shows a high electrocatalytic activity for the electro-oxidation of l-cysteine at physiological pH that has never been observed before with the commonly used metallophthalocyanine catalysts. Also, its activity is slightly higher than that exhibited by aquocobalamin. 相似文献
5.
An yttrium hexacyanoferrate nanoparticle/multi-walled carbon nanotube/Nafion (YHCFNP/MWNT/Nafion)-modified glassy carbon electrode (GCE) was constructed. Several techniques, including infrared spectroscopy, energy dispersive spectrometry, scanning electron microscopy and electrochemistry, were performed to characterize the yttrium hexacyanoferrate nanoparticles. The electrochemical behavior of the YHCFNP/MWNT/Nafion-modified GCE in response to l-cysteine oxidation was studied. The response current of l-cysteine oxidation at the YHCFNP/MWNT/Nafion-modified GCE was obviously higher than that at the bare GCE or other modified GCE. The effects of pH, scan rate and interference on the response to l-cysteine oxidation were investigated. In addition, on the basis of these findings, a determination of l-cysteine at the YHCFNP/MWNT/Nafion-modified GCE was carried out. Under the optimum experimental conditions, the electrochemical response to l-cysteine at the YHCFNP/MWNT/Nafion-modified GCE was fast (within 4 s). Linear calibration plots were obtained over the range of 0.20–11.4 μmol L−1 with a low detection limit of 0.16 μmol L−1. The YHCFNP/MWNT/Nafion-modified GCE exhibited several advantages, such as high stability and good resistance against interference by ascorbic acid and other oxidizable amino acids. 相似文献
6.
Zn(II) ions have been selectively bound to the l-cysteine coated gold electrode in the form of a four-coordinated complex. Voltammograms of the Zn complex on the l-cysteine coated gold electrode showed a cathodic wave at ca. 0.05 V in the pH 7.54 phosphate buffered saline. The charge transfer coefficient and rate constant for the reduction of this Zn complex were 0.65 and 0.003 s−1, respectively. The complexation of Zn(II) ions with l-cysteine on the gold electrode resulted in the maximum surface coverage of the Zn complex of 0.35 nmol cm−2 and the Gibbs energy change of −27.6 kJ mol−1. The cathodic peak current, influenced by the types of the end functional groups in thiols, the preconcentration time, and pH values of the supporting electrolyte, was linear with the concentration of Zn(II) ions in the range of 5.0 nM to 5 μM with a detection limit of 2.1 nM. The proposed voltammetric method was utilized successfully to detect the concentration of Zn(II) ions in hairs. 相似文献
7.
Mathias Ibert Nabyl Merbouh Catherine Fiol-Petit Francis Marsais 《Electrochimica acta》2010,55(10):3589-518
The 2,2,6,6-tetramethyl-1-piperidinyloxy free radical (TEMPO) mediated electrochemical oxidation of d-glucose to d-glucaric acid on a synthetically useful scale is reported. Using TEMPO and a graphite felt anode combined with a stainless steel cathode, d-glucose was oxidized under different conditions (pH, temperature, co-oxidant), and the reaction outcomes were analyzed. Optimized conditions for such oxidation are provided along with few new interesting results unique to this reaction, such as the appearance of a novel triacid. 相似文献
8.
To achieve the feed stock recycling of poly(l-lactide) (PLLA) to l,l-lactide, PLLA composites including alkali earth metal oxides, such as calcium oxide (CaO) and magnesium oxide (MgO), were prepared and the effect of such metal oxides on the thermal degradation was investigated from the viewpoint of selective l,l-lactide formation. Metal oxides both lowered the degradation temperature range of PLLA and completely suppressed the production of oligomers other than lactides. CaO markedly lowered the degradation temperature, but caused some racemization of lactide, especially in a temperature range lower than 250 °C. Interestingly, with MgO racemization was avoided even in the lower temperature range. It is considered that the effect of MgO on the racemization is due to the lower basicity of Mg compared to Ca. At temperatures lower than 270 °C, the pyrolysis of PLLA/MgO (5 wt%) composite occurred smoothly causing unzipping depolymerization, resulting in selective l,l-lactide production. A degradation mechanism was discussed based on the results of kinetic analysis. A practical approach for the selective production of l,l-lactide from PLLA is proposed by using the PLLA/MgO composite. 相似文献
9.
The kinetics of l-cystine hydrochloride reduction have been studied at a mercury-plated copper rotating disc electrode (RDE) and at a stationary mercury disc electrode (SMDE) in 0.1 mol dm−3 HCl at 298 K. The reduction of the disulphide is irreversible and hydrogen evolution is the major side reaction. In contrast to steady state electrode kinetic studies at a mercury drop electrode (which shows a well-defined limiting current), the mercury-plated Cu RDE shows overlap between disulphide reduction and hydrogen evolution. These effects are attributable to strong reactant adsorption with a calculated surface coverage close to 100%. A Tafel slope of −185 mV per decade is found with a cathodic transfer coefficient of 0.32 and a formal rate constant of 6.7 × 10−9 m s−1. The relative merits of steady state voltammetry at a mercury-plated copper RDE and linear sweep voltammetry at the SMDE are discussed, as is the mechanism of l-cysteine hydrochloride formation. 相似文献
10.
Functionalized micelles from new ABC polyglycidol-poly(ethylene oxide)-poly(d,l-lactide) terpolymers
New ABC type terpolymers of poly(ethoxyethyl glycidyl ether)/poly(ethylene oxide)/poly(d,l-lactide) were obtained by multi-mode anionic polymerization. After successive deprotection of the ethoxyethyl groups from the first block, highly hydroxyl functionalized copolymers of polyglycidol/poly(ethylene oxide)/poly(d,l-lactide) were obtained. These copolymers form elongated ellipsoidal micelles by direct dissolution in water. The micelles consist of a poly(d,l-lactide) core and stabilizing shell of polyglycidol/poly(ethylene oxide). The hydroxyl groups of polyglycidol blocks situated at the micelle surface provide high functionality, which could be engaged in further chemical modification resulting in a potential drug targeting agents. The micellization process of the copolymers in aqueous media was studied by hydrophobic dye solubilization, static and dynamic light scattering, and transmission electron microscopy. 相似文献
11.
The spherulite growth behavior and mechanism of l-lactide copolymers, poly(l-lactide-co-d-lactide) [P(LLA-DLA)], poly(l-lactide-co-glycolide) [P(LLA-GA)], and poly(l-lactide-co-ε-caprolactone) [P(LLA-CL)] have been studied using polarization optical microscopy in comparison with poly(l-lactide) (PLLA) having different molecular weights to elucidate the effects of incorporated comonomer units. The incorporation of comonomer units reduced the radius growth rate of spherulites (G) and increased the induction period of spherulite formation (ti), irrespective of the kind of comonomer unit. Such effects became remarkable with the content of comonomers. At a crystallization temperature (Tc) of 130 °C, the disturbance effects of comonomers on the spherulite growth decreased in the following order: d-lactide>glycolide>ε-caprolactone, when compared at the same comonomer unit or reciprocal of averaged l-lactyl unit sequence length (ll). The ti estimation indicated that the glycolide units have the lowest disturbance effects on the formation of spherulite (crystallite) nuclei. The PLLA having the number-average molecular weight (Mn) exceeding 3.1×104 g mol−1 showed the transition from regime II to regime III at Tc=120 °C, whereas PLLA with the lowest Mn of 9.2×103 g mol−1 crystallized solely in regime III kinetics and the copolymers excluding P(LLA-DLA) with 3% of d-lactide units crystallized solely according to regime II kinetics. The nucleation and front constant for regime II and III [Kg(II), Kg(III), G0(II), and G0(III), respectively] estimated with each (not with a fixed for high-molecular-weight PLLA) decreased with increasing the amount of defects per unit mass of the polymer for crystallization, i.e. with increasing the comonomer content and the density of terminal group through decreasing the molecular weight. 相似文献
12.
Among the various inorganic nucleators examined, Talc and an aluminum complex of a phosphoric ester combined with hydrotalcite (NA) were found to be effective for the melt-crystallization of poly(l-lactide) (PLLA) and PLLA/poly(d-lactide) (PDLA) stereo mixture, respectively. NA (1.0 phr (per one hundred resin)) can exclusively nucleate the stereocomplex crystals, while Talc cannot suppress the homo crystallization of PLLA and PDLA in the stereo mixture. Double use of Talc and NA (in 1.0 phr each) is highly effective for enhancing the crystallization temperature of the stereo complex without forming the homo crystals. The stereocomplex crystals nucleated by NA show a significantly lower melting temperature (207 °C) than the single crystal of the stereocomplex (230 °C) in spite of recording a large heat of crystallization ΔHc (54 J/g). Photomicrographic study suggests that the spherulites with a symmetric morphology are formed in the stereo mixture added with NA while the spherulites do not grow in size in the mixture added with Talc. The exclusive growth of the stereocomplex crystals by the melt-crystallization process will open a processing window for the PLLA/PDLA. 相似文献
13.
Crystallization of nonequimolar compositions of poly(d-lactic acid) with low-molecular-weight poly(l-lactic acid) (PDLA/LMw-PLLA) blends leads to formation of various fractions of stereocomplexed PLA (sc-crystallites) and homocrystallites (PDLA or PLLA). For the PDLA/LMw-PLLA blends within the composition window of LMw-PLLA content between 30 and 50 wt%, only sc-crystal exists and no homocrystal is present. On the other hand, for PDLA/LMw-PLLA blends with excess PDLA, e.g. PDLA/LMw-PLLA = 90/10, atomic-force microscopy (AFM) characterization on various stages of crystallization of sc-PLA crystal with PDLA homocrystal shows a repetitive stacking of excess PDLA on pre-formed sc-PLA crystal serving as crystallizing templates. The crystallization initially begins with string-like (fibril-like) PDLA lamellae, followed with PDLA aggregating on sc-PLA crystal into a bead-on-string crystal, then growing to thicker irregularly-shaped dough-like lamellae. Repetitive growth cycle from strings to bead-on-string lamellae continues on top of the dough-like lamellae as new substrates, until ending impingement of the PDLA spherulites. 相似文献
14.
Fractionated samples of d,l-poly(lactic acid) (PLA) were prepared and the dielectric normal mode relaxation was studied for dilute and semi-dilute solutions of the PLA in a good solvent benzene. Results indicate that in the dilute regime the normal mode relaxation time is proportional to [η]Mw in agreement with the Rouse-Zimm theory, where [η] and Mw denote the intrinsic viscosity and weight average molecular weight, respectively. The dielectric relaxation strength which is proportional to the mean square end-to-end distance 〈r2〉 increases with increasing Mw with the power of 2ν, where ν is the excluded volume parameter determined from [η]. The relaxation time in the semi-dilute regime increases with increasing concentration C due to increases of the entanglement density and the friction coefficient. The relaxation time corrected to the iso-friction state agrees approximately with the dynamic scaling theories. The relaxation strength decreases with increasing concentration indicating that 〈r2〉 decreases on account of the screening of the excluded volume effect. The concentration dependence of 〈r2〉 agrees approximately with the scaling theory proposed by Daoud and Jannink. 相似文献
15.
Hsuan-Ying Chen 《Polymer》2007,48(8):2257-2262
A novel calcium complex, [(DAIP)2Ca]2 (where DAIP-H = 2-[(2-dimethylamino-ethylimino)methyl]phenol), is prepared in a one flask reaction by condensation of Ca(OMe)2 with DAIP-H in toluene/THF. Experimental results show that in the presence of various alcohols, [(DAIP)2Ca]2 efficiently initiates the ring-opening polymerization of l-lactide in a controlled fashion, yielding polymers with expectative molecular weight and low polydispersity indexes. Furthermore, kinetic studies show a first-order dependency on both [LA] and [BnOH]. 相似文献
16.
Mohammad K. Hassan 《Polymer》2007,48(7):2022-2029
Broadband dielectric spectroscopy was used to examine carboxylic acid-terminated poly(d,l-lactide) samples that were hydrolytically degraded in 7.4 pH phosphate buffer solutions at 37 °C. The dielectric spectral signatures of degraded samples were considerably more distinct than those of undegraded samples and a Tg-related relaxation associated with long range chain segmental mobility was seen. For both degraded and undegraded samples, a relaxation peak just beneath a DSC-based Tg was observed, which shifts to higher frequency with increasing temperature. Thus, this feature is assigned as the glass transition as viewed from the dielectric relaxation perspective. Linear segments on log-log plots of loss permittivity vs. frequency, in the low frequency regime, are attributed to d.c. conductivity. An upward shift in relaxation peak maximum, fmax, observed especially after 145 d of immersion in buffer, implies a decrease in the time scale of long range segmental motions with increased degradation time.Permittivity data for degraded and undegraded materials were fitted to the Havriliak-Negami equation with subtraction of the d.c. conductivity contribution to uncover pure relaxation peaks. Parameters extracted from these fits were used to construct Vogel-Fulcher-Tammann-Hesse (VFTH) curves and distribution of relaxation time, G(τ), curves for all samples. It was seen that the relaxation times for the α-transition in both degraded and undegraded samples showed VFTH temperature behavior. G(τ) curves showed a general broadening and shift to lower τ with degradation, which can be explained in terms of a broadening of molecular weight within degraded samples and faster chain motions. 相似文献
17.
Anirban Sen Gupta 《Polymer》2005,46(7):2133-2140
Since their introduction by Kohn and Langer et al. in 1984, l-tyrosine based ‘pseudo’ poly(amino acids) have undergone extensive research in the area of polymeric biomaterials. Starting from l-tyrosine based diphenolic monomers, polyiminocarbonates, polycarbonates and polyarylates have been developed by Kohn and co-workers and are being investigated for potential orthopedic biomaterial applications. Mao et al. have reported development of l-tyrosine based polyphosphates and polyphosphonates in a patent, however, detailed structural and physico-chemical characterization studies on such polymers have not been reported yet. For the purpose of the current paper, using a novel solid phase process for synthesis of l-tyrosine based diphenolic monomers and adapting the polymerization process described by Mao et al., l-tyrosine based polyphosphates were developed and investigated for their pertinent bioengineering properties. The properties investigated consist of chemical solubility, hydrophilicity and hydrolytic degradation. The results of this investigation are crucial to validate further investigation of biomaterial applications of these polymers. 相似文献
18.
Hydrolytic degradation of poly(d,l-lactide) as a function of end group: Carboxylic acid vs. hydroxyl
Jeffrey S. Wiggins 《Polymer》2006,47(6):1960-1969
d,l-Lactide was initiated with 1,4-butanediol in the presence of stannous octoate catalyst to provide hydroxyl-terminated poly(d,l-lactide) at 5000 and 20,000 g/mol. Portions of these materials were reacted with succinic anhydride in the presence of 1-methylimidazole to convert the hydroxyl functionality to succinic acid-terminated polymers in relatively high yield. The four materials were placed in a 7.4 pH buffered saline solution at 37 °C and monitored up to 180 days for their relative moisture uptake and weight loss behaviors. Carboxylic acid functionality displayed a dramatic effect on the moisture uptake behaviors for the 5000 and 20,000 g/mol polymers when compared to their respective hydroxyl functional materials. Carboxylic acid functionality significantly increased the hydrolytic degradation rate and mass loss behavior for the 5000 g/mol material, but did not affect the hydrolytic degradation rate for the higher molecular weight sample. These results suggest that moisture uptake is not the rate limiting step for the hydrolytic degradation high molecular weight poly(d,l-lactide). 相似文献
19.
The activity of electrochemically oxidized carbon electrode was investigated in the operation of a direct l-ascorbic acid fuel cell anode. The surface oxygen species placed on electrochemically oxidized carbon electrode were analyzed by X-ray photoelectron spectroscopy and cyclic voltammetry. The electrochemical oxidation process of carbon electrode can facilitate the pore-filling process (i.e., wetting) of the electrolyte into the microstructure of the carbon electrode by increasing the number of more polar functional groups on the electrode surface. The electrochemically oxidized carbon electrode exhibited significantly enhanced electro-catalytic oxidation activity of l-ascorbic acid compared to an unmodified carbon electrode. Moreover, the simplified electrode structure using carbon paper without an additional powder-based precious catalyst layer is very favorable in creating percolation network and generates power density of 18 mW/cm2 at 60 °C. 相似文献
20.
Nthapo Sehlotho 《Electrochimica acta》2006,51(21):4463-4470
Catalytic activity of a self-assembled monolayer (SAM) of cobalt tetra ethoxythiophene phthalocyanine (CoTEThPc-SAM) complex towards oxidation of thiocyanate (SCN−), l-cysteine (CYS) and 2-mercaptoethanol (2-ME) is reported. The oxidation of thiocyanate occurs via a two electron transfer, whereas l-cysteine and 2-ME require 1 electron. The oxidation of thiocyanate is catalysed by ring based processes, while l-cysteine is catalysed by both CoIII/CoII process and by ring based processes. 2-ME is catalysed by CoIII/CoII process. The oxidation of thiocyanate on CoTEThPc was performed in acid media instead of basic media commonly employed. The reaction order was found to be unity for all the analytes, showing that only one molecule of analyte interacts with one molecule of the catalyst during the rate determining step. 相似文献