首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The microstructure and basic mechanical properties, as hardness, fracture toughness, fracture strength and subcritical crack growth at room temperature were investigated and creep behavior at high temperatures was established. The presence of SiC particles refined the microstructure of Si3N4 grains in the Si3N4 + SiC nanocomposite. Higher hardness values resulted from introducing SiC nanoparticles into the material. A lower fracture toughness of the nanocomposite is associated with its finer microstructure; crack bridging mechanisms are not so effective as in the case of monolithic Si3N4. The strength value of the monolithic Si3N4 is higher than the characteristic strength of nanocomposites. Fractographic analysis of the fracture surface revealed that a failure started principally from an internal flaw in the form of cluster of free carbon, and on large SiC grains which degraded strength of the nanocomposite. The creep resistance of nanocomposite is significantly higher when compared to the creep resistance of the monolithic material. Nanocomposite exhibited no creep deformation, creep cracks have not been detected even at a test at 1400 °C and a long loading time, therefore the creep is probably controlled mainly by diffusion. The intergranular SiC nanoparticles hinder the Si3N4 grain growth, interlock the neighboring Si3N4 grains and change the volume fraction, geometry and chemical composition of the grain boundary phase.  相似文献   

2.
《Composites Part A》1999,30(4):425-427
Ceramic nanocomposites, Si3N4 matrix reinforced with nano-sized SiC particles, were fabricated by hot pressing the mixture of Si3N4 and SiC fine powders with different sintering additives. Distinguishable increase in fracture strength at low and high temperatures was obtained by adding nano-sized SiC particles in Si3N4 with Al2O3 and/or Y2O3. Si3N4/SiC nanocomposite added with Al2O3 and Y2O3 demonstrated the maximum strength of 1.9 GPa with average strength of 1.7 GPa. Fracture strength of room temperature was retained up to 1400 as 1 GPa in the sample with addition of 30 nm SiC and 4 wt% Y2O3. Striking observation in this nanocomposite is that SiC particles at grain boundary are directly bonded to Si3N4 grain without glassy phases. Thus, significant improvement in high temperature strength in this nanocomposite can be attributed to inhibition of grain boundary sliding and cavity formation primarily by intergranular SiC particles, besides crystallization of grain boundary phase.  相似文献   

3.
Si3N4-SiC composites have been microwave sintered using β-Si3N4 and β-SiC as starting materials. Si3N4 rich compositions (95 and 90 vol.% Si3N4) have been sintered above 96% of theoretical density without using any sintering additives in 40 min. A monotonic decrease in relative density is observed with increase in SiC proportion in the composite. Decrease in relative density has manifested in the reduction of fracture toughness and microhardness values of the composite with increase in SiC content although the good sintering of matrix Si3N4 limits the decrease of fracture toughness. Highest value of fracture toughness of 6.1 MPa m1/2 is observed in 10 vol.% SiC composite. Crack propagation appears to be transgranular in the Si3N4 matrix and the toughening of the composites is through crack deflection around hard SiC particles in addition to its debonding from the matrix.  相似文献   

4.
The stability of bubbles and the microstructures of sintered Si3N4 ceramic foams produced by direct foaming method were investigated. The bubbles produced by short-chain amphiphiles (propyl gallate) have higher stability as compared with that produced by long-chain surfactants (TritonX-114). Si3N4 ceramic foams using short-chain amphiphile are particle-stabilized one, the pore cells are spherical and closed, and cell surfaces are smooth and dense. The pore cells of sintered Si3N4 ceramic foams using TritonX-114 foaming are coarse and large, and pore cells are polyhedral. High gas-pressure sintering is conducive to the development of the whisker-like microstructures in Si3N4 ceramic foams. The sintered Si3N4 ceramic foams with the whisker-like microstructure are quite promising for improving the mechanical strength of the ceramics by a simple and safe way.  相似文献   

5.
Pressureless sintered (PLS) and gas-pressure sintered (GPS) Si3N4, PLS and GPS SiC particle/Si3N4 composites, and PLS + HIP and GPS + HIP SiC particle/Si3N4 composites were produced. Investigation of their mechanical properties showed that PLS + HIP and GPS + HIP composites, containing SiC particles in the beta-silicon nitride grains, yield higher bending strength, although its fracture toughness remains at the same level. This is attributed to the fact that the added SiC particles inhibit excessive growth of beta-Si3N4 grains without changing the fracture behaviour. However, this investigation also found precipitation during the reaction between SiC and nitrogen in gas pressure sintering, resulting in a low Young's modulus and low density in the GPS composite.  相似文献   

6.
Synthesis of Si3N4 whiskers in porous SiC bodies   总被引:1,自引:0,他引:1  
Si3N4 whiskers were synthesized by the carbothermal reduction process in porous SiC bodies. The SiC bodies had a sponge microstructure with pore sizes of approximately 600 μm. The raw materials for the Si3N4 whiskers were powder mixtures of Si3N4, SiO2 and Si for silicon and phenolic resin for carbon. Cobalt was used as a metal catalyst. The carbothermal reaction was performed at 1400 °C or 1500 °C for 1 or 2 h. The α-Si3N4 whiskers grew inside the SiC pores by the VLS process, and their diameters ranged from 0.1 to 1.0 μm. The length of the grown Si3N4 whiskers was over 100 μm and their growth direction was [100].  相似文献   

7.
观测Fe2(MoO4)3和Fe2(MoO4)3/Si3N4粉末H2还原后的微结构特征, 研究了其微观组织结构的演变。 结果表明: Fe2(MoO4)3还原后转变为20 nm厚的Fe薄层包覆Mo颗粒的微结构; Fe2(MoO4)3/Si3N4粉末被还原后转变为两种结构形式颗粒粉末, 一种为3--5 nm的薄层Fe包覆在Mo颗粒表面粉末, 一种为粘附有纳米Fe--Mo氮化物、Si、Mo等颗粒的Si3N4粉末。Fe2(MoO4)3/Si3N4粉末还原后形成这种微结构的原因是, 在还原过程中同时发生了两种反应: 一种是Fe2(MoO4)3自身发生分解还原反应, 另一种是Fe2(MoO4)3与Si3N4颗粒表面发生反应。  相似文献   

8.
The structure and properties of electrodeposited nickel composites reinforced with inert particles like SiC, Si3N4 and Al2O3 were compared. A comparison was made with respect to structure, morphology, microhardness and tribological behaviour. The coatings were characterized with optical microscopy, Scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) technique. The cross-sectional microscopy studies revealed that the particles were uniformly distributed in all the composites. However, a difference in the surface morphology was revealed from SEM studies. The microhardness studies revealed that Si3N4 reinforced composite showed higher hardness compared to SiC and Al2O3 composite. This was attributed to the reduced crystallite size of Ni — 12 nm compared to 16 nm (SiC) and 23 nm (Al2O3) in the composite coating. The tribological performance of these coatings studied using a Pin-on-disk wear tester, revealed that Si3N4 reinforced composite exhibited better wear resistance compared to SiC and Al2O3 composites. However, no significant variation in the coefficient of friction was observed for all the three composites.  相似文献   

9.
Reactive hot-press (1800-1880 °C, 30 MPa, vacuum) is used to fabricate relatively dense B4C matrix light composites with the sintering additive of (Al2O3 +Y2O3). Phase composition, microstructure and mechanical properties are determined by methods of XRD, SEM and SENB, etc. These results show that reactions among original powders B4C, Si3N4 and TiC occur during sintering and new phases as SiC, TiB2 and BN are produced. The sandwich SiC and claviform TiB2 play an important role in improving the properties. The composites are ultimately and compactly sintered owing to higher temperature, fine grains and liquid phase sintering, with the highest relative density of 95.6%. The composite sintered at 1880 °C possesses the best general properties with bending strength of 540 MPa and fracture toughness of 5.6 MPa m1/2, 29 and 80% higher than that of monolithic B4C, respectively. The fracture mode is the combination of transgranular fracture and intergranular fracture. The toughening mechanism is certified to consist of crack deflection, crack bridging and pulling-out effects of the grains.  相似文献   

10.
A novel composite filler alloy was developed by introducing Si3N4p (p = particles) into Ag-Cu-Ti filler alloy. The brazing of Si3N4 ceramics and TiAl intermetallics was carried out using this composite filler alloy. The typical interfacial microstructure of brazed joints was: TiAl/AlCu2Ti reaction layer/Ag(s,s) + Al4Cu9 + Ti5Si3p + TiNp/TiN + Ti5Si3 reaction layer/Si3N4. Effects of Si3N4p content in composite filler alloy on the interfacial microstructure and joining properties were investigated. The distribution of Ti5Si3p and TiNp compounds in Ag-based solid solution led to the decrease of the mismatch of the coefficient of thermal expansion (CTE) and the Young's modulus between Si3N4 and TiAl substrate. The maximum shear strength of 115 MPa was obtained when 3 wt.% Si3N4p was added in the composite filler alloy. The fracture analysis showed that the addition of Si3N4p could improve the mechanical properties of the joint.  相似文献   

11.
Phase transformation, microstructure development and mechanical properties of 2.45 GHz microwave-sintered silicon nitride (Si3N4) with lithium yttrium oxide (LiYO2) and zirconia (ZrO2) sintering additives were investigated. It was found that α to β phase transformation completed at a lower temperature of 1500 °C. Scanning electron microscopy (SEM) micrographs revealed a bimodal microstructure with a large number of elongated β-Si3N4 grains in addition to smaller grains. Surface residual porosity was observed in all sintered samples due to selective localized over heating of grain-boundary glassy phase. The high aspect-ratio of β-Si3N4 grains exhibited significant crack deflection, debonding and pull-out. It was observed that Vickers hardness and indentation fracture toughness increased with increasing sintering temperature.  相似文献   

12.
Abstract

Si3N4–TiC nanocomposites are fabricated by hot press sintering from silicon nitride nanopowders and ultrafine TiC powders. The microstructure and mechanical properties are analysed and discussed. Scanning electron microscopy images show that the microstructure consists of equiaxed grains and grain boundary phase. The TiC added as a dispersed phase reacts with the nitrogen from Si3N4 during the liquid phase sintering, with the formation of TiC0.7 N0.3 , trace of SiC and N2. The adding of a proper amount of TiC powders increases the flexural strength and has little influence on fracture toughness. The hardness increases with increasing TiC content.  相似文献   

13.
The crack‐healing behaviour of machining cracks in Si3N4/20 wt% SiC composite was investigated. The machining cracks were introduced by a heavy machining process, during the creation of a semicircular groove. The machined specimens were healed at various temperatures and times in air. The optimized crack‐healing condition of the machined specimens was found to be a temperature of 1673 K and a time of 10 h. The specimens healed by this condition exhibited almost the same strength as the smooth specimens healed. Moreover, the bending strengths and the fatigue limits of the machined specimens healed were systematically investigated at temperatures from room temperature to 1673 K. The machined specimens healed at the optimized condition exhibited an almost constant bending strength (~700 MPa) up to 1673 K. Also, the specimens exhibited considerably high cyclic and static fatigue limits at temperatures from 1073 to 1573 K. These results demonstrated that the crack‐healing could be an effective method for improving the structural integrity and reducing machining costs of the Si3N4/SiC composite ceramic.  相似文献   

14.
Dense short silicon carbide (SiCsf) and carbon fibers (Csf) reinforced BaAl2Si2O8 (BAS) glass-ceramic composites with silicon nitride were fabricated by hot-pressing technique. The phase characterization, microstructure, mechanical properties and fracture behavior of the composites were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and three-point bending tests. The results showed that short silicon carbide and carbon fibers disperse homogeneously in BAS matrix, and had good chemical compatibility with the glass-ceramic matrix. The addition of Si3N4 could successfully eliminate the microcracks in the BAS matrix induced by the thermal mismatch between the fiber and matrix. Both the added short fibers could effectively reinforce the BAS glass-ceramic by the associated toughening mechanisms such as crack deflection, fiber bridging and pullout effects.  相似文献   

15.
The crack propagation rsistance behavior of Si3N4 ceramics reinforced by boron nitride nanotubes (BNNT) has been discussed in the work. And, bending strength and fracture toughness of Si3N4/BNNT composites were tested by three point bending method. It is shown that crack propagation resistance of BNNT/Si3N4 composites is increased distinctly owing to addition of BNNT. It is attributed to the pinning and bridging roles of BNNT. One kind of mathematical model was constructed for calculating crack propagation resistance of Si3N4 ceramics and BNNT/Si3N4 composites. Crack resistance curve (R-Curve) of Si3N4 ceramics and BNNT/Si3N4 composites was also calculated. Crack propagation of them was simulated using finite element methods. The results show that strong shielding area is formed in crack tip owing to existence of BNNT and crack propagation is prevented by strong stress shielding roles.  相似文献   

16.
In this study, Si3N4 ceramic was jointed by a brazing technique with a Cu–Zn–Ti filler alloy. The interfacial microstructure between Si3N4 ceramic and filler alloy in the Si3N4/Si3N4 joint was observed and analyzed by using electron-probe microanalysis, X-ray diffraction and transmission electron microscopy. The results indicate that there are two reaction layers at the ceramic/filler interface in the joint, which was obtained by brazing at a temperature and holding time of 1223 K and 15 min, respectively. The layer nearby the Si3N4 ceramic is a TiN layer with an average grain size of 100 nm, and the layer nearby the filler alloy is a Ti5Si3Nx layer with an average grain size of 1–2 μm. Thickness of the TiN and Ti5Si3Nx layers is about 1 μm and 10 μm, respectively. The formation mechanism of the reaction layers was discussed. A model showing the microstructure from Si3N4 ceramic to filler alloy in the Si3N4/Si3N4 joint was provided as: Si3N4 ceramic/TiN reaction layer/Ti5Si3Nx reaction layer/Cu–Zn solution.  相似文献   

17.
纳米SiC及Si3N4/SiC的高温等静压研究   总被引:3,自引:0,他引:3  
采用高温等静压工艺,制备了纳米结构的单相SiC及Si3N4/SiC复相陶瓷,并通过X射线衍射分析透射有高分辨电镜对其相组成及结构进行了表征。实验表明,在温度1850℃,压力200MPa条件下保温1h,要获得晶粒尺寸〈100nm,结构均匀,致密的单相SiC纳米结构陶瓷。  相似文献   

18.
《材料科学技术学报》2019,35(12):2809-2813
Aiming to obtain microwave absorbing materials with excellent mechanical and microwave absorption properties, carbon fiber reinforced Si_3N_4 ceramics(Cf-Si_3N_4) with pyrolytic carbon(PyC)/SiC interphases were fabricated by gel casting. The influences of carbon fibers content on mechanical and microwave absorption properties of as-prepared Si_3N_4 based ceramics were investigated. Results show that chemical compatibility between carbon fibers and Si_3N_4 matrix in high temperature environment can be significantly improved after introduction of Py C/SiC interphases. As carbon fibers content increases from 0 to 4 wt%, flexural strength of Si_3N_4 based ceramics decreases slightly while fracture toughness obviously increases. Moreover, both the real and imaginary parts of complex permittivity increase with the rising of carbon fibers content within the frequency range of 8.2–12.4 GHz. Investigation of microwave absorption shows that the microwave attenuation ability of Cf-Si_3N_4 ceramics with Py C/SiC interphases is remarkably enhanced compared with pure Si_3N_4 ceramics. Effective absorption bandwidth(-10 d B) of10.17–12.4 GHz and the minimum reflection less of-19.6 d B are obtained for Si_3N_4 ceramics with 4 wt%carbon fibers in 2.0 mm thickness. Cf-Si_3N_4 ceramics with Py C/SiC interphases are promising candidates for microwave absorbing materials with favorable mechanical property.  相似文献   

19.
BNNT/Si3N4 ceramic composites with different weight amount of BNNT fabricated by hot isostatic pressing were introduced. The mechanical properties and thermal shock resistance of the composites were investigated. The results showed that BNNT-added ceramic composites have a finer and more uniform microstructure than that of BNNT-free Si3N4 ceramic because of the retarding effect of BNNT on Si3N4 grain growth. The addition of 1.5 wt.% BNNT results in simultaneous increase in flexural strength, fracture toughness, and thermal shock resistance. The analysis of the results indicates that BNNT brings many thermal transport channels in the microstructure, increasing the efficiency of thermal transport, therefore results in increase of thermal shock resistance. In addition, BNNT improves the residual flexural strength of composites by crack deflection, bridging, branching and pinning, which increase the crack propagation resistance.  相似文献   

20.
《Materials Research Bulletin》2006,41(7):1215-1224
Two kinds of Al2O3/Ti(C0.7N0.3) nanocomposites were fabricated with traditional hot pressed sintering and repetitious-hot-pressing technology, one is added with nano-scale SiC, and the other is without SiC. The results showed that the mechanical properties of the former are higher than that of the latter, especially the fracture toughness can reach up to 8.3 MPa m1/2. Although the fracture toughness remains high, repetitious-hot-pressing results in the reduction of flexural strength. The improvement of the mechanical properties is interpreted from the different microstructure and fracture mode. The microstructure shows that the addition of nano-scale Ti(C0.7N0.3) and nano-scale SiC lead to the refinement of matrix grain, and the inter/intragranular microstructure can be formed instead of the intergranular microstructure in monolithic alumina. The higher fracture toughness resulted mainly from the transgranular fracture mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号