首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The electrochemical reduction of nitrate ions at a copper electrode in an unbuffered neutral aqueous solution is studied. Using a two compartment electrochemical cell, three stationary cathodic waves, noted P1, P2 and P3, were evidenced by cyclic voltammetry at −0.9, −1.2 and −1.3 V/SCE, respectively. By comparing the electrochemical response of nitrate and nitrite containing solutions, P1 was attributed to the reduction of nitrate to nitrite. In order to assign P2 and P3 features by determining the number of electrons involved at the corresponding potential, rotating disk electrode experiments at various rotation speeds, combined with linear sweep voltammetry, were performed. Current data analysis at a given potential was carried out using Koutecky-Levich treatment taking into account water reduction. Confident values of the diffusion coefficient D of nitrate ions were assessed by electrochemical impedance spectroscopy for nitrate concentrations of 10−3, 10−2 and 10−1 M. For a nitrate concentration of 10−2 M, D was found to be 1.31 × 10−5 cm2 s−1 allowing the number of electrons to be determined as 6 for P2 and 8 for P3, in accordance with nitrate reduction into hydroxylamine and ammonia, respectively. The formation of hydroxylamine was confirmed by the observation of its reoxidation at a Pt microelectrode present at the Cu electrode/nitrate solution interface.  相似文献   

2.
The electrochemical reduction of nitrate on tin cathode at very high cathodic potentials was studied in 0.1 M K2SO4, 0.05 M KNO3 electrolyte. A high rate of nitrate reduction (0.206 mmol min−1 cm−2) and a high selectivity (%S) of nitrogen (92%) was obtained at −2.9 V versus Ag/AgCl. The main by-products were ammonia (8%) and nitrite (<0.02%). Small amounts of N2O and traces of NO were also detected.As the cathodic potential increases, the %S of nitrogen increases, while that of ammonia displays a maximum at −2.2 V. The %S of nitrite decreases from 65% at −1.8 V to <0.02% at −2.4 V. The kinetic analysis indicated that the formation of nitrogen and ammonia proceeds through the intermediate nitrite.The reduction follows first order kinetics for both nitrate and nitrite at more cathodic potentials than −2.4 V, while at less negative potentials the kinetics is more complicated.The %Faradaic efficiency (%FE) of the reduction at −2.9 V was about 60% initially and decreased to 22% at 40 min.A cathodic corrosion of tin was observed, which was more intensive in the absence of nitrate. At potentials more negative than −2.4 V, small amounts of tin hydride were detected.  相似文献   

3.
This study uses rotating ring-disk electrode (RRDE) and linear sweep voltammetry (LSV) to characterize oxygen reduction kinetics in alkaline solution on platinum electrodes with various thickness of hydrous oxide (oxyhydroxy) film. Oxyhydroxy films are created on Pt electrodes by pretreatment in 1.0 mol dm−3 KOH at a constant voltage. The pretreatment voltage ranges from −1.2 to 1.0 V and is increased stepwise before each new experimental run to produce seven discreet films. LSV plots show oxyhydroxy film thickness strongly inhibits oxygen reduction and is inversely proportional to RRDE oxygen reduction current ID for LSV voltages ED from −0.1 to −0.46 V, but this trend reverses at ED more negative than −0.46 V so that the worst-performing electrode becomes the best. However, this improvement disappears at around −0.8 V, suggesting this change involves a negatively charged ion, possibly embedded into the metal in the top few atomic layers either interstitially or substitutionally. The 1.0 V-pretreated electrode in the ED range from −0.46 to −0.9 V of highest oxygen reduction current also exhibits the lowest hydrogen peroxide production, with zero H2O2 produced at −0.6 V, indicating the brief presence of the oxyhydroxy film on the Pt surface has strong lingering effects. The post-oxyhydroxy Pt surface is very different than the native Pt for oxygen reduction pathway and efficiency. Reaction order with respect to oxygen is close to 1. The rate constants of the direct O2 to H2O electroreduction reaction are increased with decreasing the potential from −0.2 to −0.6 V, but the O2 to H2O2 electroreduction is contrary to this expectation. The rate constants of H2O2 decomposition on the oxyhydroxy film-covered Pt electrode are near constant around 1 × 10−4 cm s−1 at ED > −0.5 V.  相似文献   

4.
The kinetics of electrocatalytic reduction of nitrate on Pt(1 1 0) in perchloric acid was studied with cyclic voltammetry at a very low sweep rate of 1 mV s−1, where pseudo-steady state condition was assumed to be achieved at each electrode potential. Stationary current-potential curves in perchloric acid in the absence of nitrate showed two peaks at 0.13 V and 0.23 V (RHE) in the so-called adsorbed hydrogen region. The nitrate reduction proceeded in the potential region of the latter peak in the pH range studied. The reaction orders with respect to NO3 and H+ were observed to be close to 0 and 1, respectively. The former value means that the adsorbed NO3 at a saturated coverage is one of the reactants in the rate-determining step (rds). The latter value means that hydrogen species is also a reactant above or on the rds. The Tafel slope of nitrate reduction was −66 mV per decade, which is taken to be approximately −59 mV per decade, indicating that the rds is a pure chemical reaction following electron transfer. We discuss two possible reaction schemes including bimolecular and monomolecular reactions in the rds to explain the kinetics and suggest that the reactants in the rds are adsorbed hydrogen and adsorbed NO3 with the assistance of the results in our recent report for nitrate reduction on Pt(S)[n(1 1 1) × (1 1 1)] electrodes: the nitrate reduction mechanism can be classified within the framework of the Langmuir-Hinshelwood mechanism.  相似文献   

5.
Laccase from Cerrena unicolor was adsorbed on hydrophilic carbon nanoparticles (diameter = ca. 7.8 nm) modified with phenyl sulfonate groups and immobilized on an ITO electrode surface in a sol-gel processed silicate film. As shown by scanning electron and atomic force microscopies, the nanoparticles are evenly distributed on the electrode surface forming small aggregates of tens of nanometers in size. The mediator-free electrode exhibits significant and pH-dependent electrocatalytic activity towards dioxygen reduction. The maximum catalytic current density (95 μA cm−2) is obtained at pH 4.8 corresponding to maximum activity of the enzyme. Under these conditions dioxygen electroreduction commences at 0.575 V vs. Ag|AgClsat, a value close to the formal potential of the T1 redox centre of the laccase. The scanning electrochemical microscopy images obtained in redox competition mode exploiting mediatorless electrocatalysis show that the laccase is evenly distributed in the composite film. The obtained electrode was applied as biocathode in a zinc-dioxygen battery operating in 0.1 M McIlvaine buffer (pH 4.8). It provides 1.48 V at open circuit and a maximum power density 17.4 μW cm−2 at 0.7 V.  相似文献   

6.
Nanodiamond (ND) powder electrodes were fabricated and the electrochemical properties were investigated in the solution containing nitrite in this article. This electrode exhibits substantial catalytic ability toward the oxidation of nitrite anions. The electrochemical oxidation mechanism of nitrite on the ND powder electrode is discussed. The oxidation of NaNO2 is a two-electron transfer process. The electrode reaction rate constant k is estimated to be 2.013 × 10−4 cm/s and (1 − α)nα is 0.1643. The peak current increases linearly with the rising of the concentration of NaNO2.  相似文献   

7.
This work studies the effect of three additives, sodium lauryl sulfate (SLS), cetyltrimethylammonium bromide (CTABr) and arabic gum (AG) on zinc electrowinning on aluminum in a solution of 85 g L−1 Zn(II) (1.3 M) in 108 g L−1 H2SO4 (1.1 M). The influence of these three additives is analyzed during the different stages of the reduction process using chronopotentiometric techniques on an aluminum rotating disk electrode (RDE). Potential ranges (−1.05 < E < −0.85 V versus SHE) and current density (−51 < i < −0.2 mA cm−2) within which zinc electrodeposition takes place in the presence of the three different additives were established. These parameters were used to determine current efficiencies (Φ), evaluated by electrolysis on an aluminum rotating cylinder electrode (RCE); the zinc deposition efficiency in the presence of SLS, CTABr and AG, was 95%, 96% and 99%, respectively, were all greater than the efficiency obtained without any additive (WA), Φ = 84%. The homogeneity of the deposits at the end of electrolyses implied that the (RCE) promotes uniform current density on the electrode surface and, hence, can be considered a model cell to evaluate current efficiencies.  相似文献   

8.
T. Romann  E. Lust 《Electrochimica acta》2010,55(20):5746-9194
The properties of Bi surfaces with different roughnesses were characterized by electron microscopy, cyclic voltammetry, and impedance spectroscopy. Two different strategies were used for preparation of porous bismuth layers onto Bi microelectrode surface in aqueous 0.1 M LiClO4 solution. Firstly, treatment at potential E < −2 V (vs. Ag|AgCl in sat. KCl) has been applied, resulting in bismuth hydride formation and decomposition into Bi nanoparticles which deposit at the electrode surface. Secondly, porous Bi layer was prepared by anodic dissolution (E = 1 V) of bismuth electrode followed by fast electroreduction of formed Bi3+ ions at cathodic potentials E = −2 V. The nanostructured porous bismuth electrode, with surface roughness factor up to 220, has negligible frequency dispersion of capacitance and higher hydrogen evolution overvoltage than observed for smooth Bi electrodes.  相似文献   

9.
Anodic, cathodic and cyclic voltammetric (CV) deposition of ruthenium oxides from aqueous RuCl3 solutions have been investigated using stationary and rotating disk electrodes (RDE) in this work. The CV deposition behavior was examined using a RDE to differentiate the contribution of current from the reactions of ruthenium ions in the electrolyte and ruthenium oxides already adsorbed on the electrode. The results indicate that the CV growth of ruthenium oxides within the potential range of aqueous electrolyte decomposition is attributed to the anodic oxidation of ruthenium ions in the electrolyte. Cathodic deposition occurs only at potential negative than −0.30 V versus saturated calomel electrode (SCE) when H2 evolves on the electrodes. Anodic deposition of ruthenium oxides can be obtained effectively in the potential range of ca. 0.9-1.1 V versus SCE, depending on the pH value of the electrolyte. The optimum anodic and cathodic deposition potential for maximum deposition efficiency is 1.0 and −0.9 V versus SCE, respectively, in the electrolyte solution of pH 2.  相似文献   

10.
Electroreduction kinetics of the peroxodisulfate anions on the electrochemically polished Bi(1 1 1) single crystal electrode has been studied by impedance spectroscopy. Influence of the electrode potential, reaction intermediates, base electrolyte and reactant concentrations on the kinetic parameters of electroreduction has been established. Systematic analysis of the fitting results demonstrates the noticeable influence of adsorption of the reaction intermediate or reactant on the electroreduction rate of the S2O82− anions at the Bi(1 1 1) electrode. In the region of so-called “current pits” in the cyclic voltammetry curves, obtained by rotating disc electrode method, the mixed kinetics, i.e. the adsorption and “true” charge transfer limited steps have been established by impedance spectroscopy.  相似文献   

11.
The electrochemical preparation described herein involved the electrocatalytic oxidation of sulfite on a platinum electrode modified with nanostructured copper salen (salen = N,N′-ethylenebis(salicylideneiminato)) polymer films. The complex was prepared and electropolymerized at a platinum electrode in a 0.1 mol L−1 solution of tetrabutylammonium perchlorate in acetonitrile by cyclic voltammetry between 0 and 1.4 V vs. SCE. After cycling the modified electrode in a 0.50 mol L−1 KCl solution, the estimated surface concentration was found to be equal to 2.2 × 10−9 mol cm−2. This is a typical behavior of an electrode surface immobilized with a redox couple that can usually be considered as a reversible single-electron reduction/oxidation of the copper(II)/copper(III) couple. The potential peaks of the modified electrode in the electrolyte solution (aqueous) containing the different anions increase with the decrease of the ionic radius, demonstrating that the counter-ions influence the voltammetric behavior of the sensor. The potential peak was found to be linearly dependent upon the ratio [ionic charge]/[ionic radius]. The oxidation of the sulfite anion was performed at the platinum electrode at +0.9 V vs. SCE. However, a significant decrease in the overpotential (+0.45 V) was obtained while using the sensor, which minimized the effect of oxidizable interferences. A plot of the anodic current vs. the sulfite concentration for chronoamperometry (potential fixed = +0.45 V) at the sensor was linear in the 4.0 × 10−6 to 6.9 × 10−5 mol L−1 concentration range and the concentration limit was 1.2 × 10−6 mol L−1. The reaction order with respect to sulfite was determined by the slope of the logarithm of the current vs. the logarithm of the sulfite concentration.  相似文献   

12.
Dissociative adsorption and oxidation of glycine on Au(1 1 1) single crystal electrodes in alkaline solutions were studied in the present paper using cyclic voltammetry (CV), in situ FTIR spectroscopy (FTIRS) and electrochemical quartz crystal microbalance (EQCM). In situ FTIRS results demonstrated that adsorbates derived from glycine dissociative adsorption are adsorbed cyanide anions (CNad). The CNad species are stable on Au(1 1 1) surface in the potential region from −0.8 to 0.0 V, and can be oxidized when electrode potential is increased above 0.1 V. The oxidation of CNad releases surface active sites for further glycine oxidation. The products of CNad oxidation were determined by in situ FTIRS as cyanate (OCN), aurous cyanide (AuCN) and aurous di-cyanide (Au(CN)2). The formation of Au(CN)2 may initiate a dissolution of Au(1 1 1) surface atoms, which has been confirmed by a loss of surface mass determined in EQCM studies. It has revealed also that at high electrode potential region glycine may be split on Au(1 1 1) surface to form AuCH2NH2 and AuCOO adsorbates. Further oxidation of these species yielded CO2 and -NH2, and the AuCH2NH2 may be also combined with surface Au oxide to form methylamine. The CO2 species produced in glycine oxidation are all retained in alkaline solutions to generate carbonate (CO32−) and bicarbonate (HCO3) species that were clearly determined by in situ FTIRS studies.  相似文献   

13.
The influence of ammonium thiocyanate (NH4SCN) on the mechanism of manganese electrodeposition from a chloride-based acidic solution was investigated by cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM). The EQCM data were represented as plots dΔm dt−1 versus E, known as massograms. Because massograms are not affected by interference from the hydrogen evolution reaction, they clearly show the manganese reduction and oxidation processes. By comparing the voltammograms with their corresponding massograms, it was possible to differentiate mass changes due to faradaic processes from those due to non-faradaic processes. Morphology, chemical composition and structure of the manganese deposits formed in different potential ranges were analyzed by scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), and X-ray diffraction (XRD). The results showed that in the absence of NH4SCN, Mn(OH)2(s) is formed in the potential range −1.1 to −0.9 V due to the hydrogen evolution reaction in this region. At more cathodic potentials, the deposition of β-manganese and the inclusion of Mn(OH)2(s) into the deposit occur; both of these species underwent dissolution by non-faradaic processes during the anodic scan. In the presence of NH4SCN, the formation of α- and γ-manganese was observed. When the potential was ≤−1.8 V and [NH4SCN] exceeded 0.3 M, the α-manganese phase was favored.  相似文献   

14.
Hydrolytic lignin (HL) was adsorbed from an aqueous/organic solution on bare and iodine-modified gold electrode. Subsequent electrooxidation of the lignin adsorbate generated redox-active quinone-based groups in the biopolymer structure, exhibiting high reversibility during potential cycling and fast electron transfer kinetics. The presence of the chemisorbed iodine layer on the supporting gold electrode had a pronounced effect on the electrochemical properties of the final modified electrode in terms of double-layer capacitance (Cdl) and the observed surface coverage (Γobs). The high electrochemical activity in connection with low Cdl made it possible to apply the Au|I(ads)|HL electrode as a fast-responding and sensitive electrochemical sensor for NADH. When tested in the amperometric mode at a constant potential of +0.4 V vs. Ag/AgCl, the modified electrode showed a linear current-concentration response over the range of 5-120 μM with a sensitivity of 2.39 nA μM−1 cm−2 and a detection limit of 1.0 μM (S/N = 3). Kinetic studies using the rotating disk electrode revealed that the mediated oxidation of NADH on the Au|I(ads)|HL electrode was limited by the second order reaction of the analyte molecules with o-quinone moieties with a rate constant of ca. 4.7 × 102 M−1 s−1 (CNADH → 0). The modified electrode showed high resistivity against fouling and retained ca. 65% activity after storage in phosphate buffer (pH 7.4) at room temperature for 1 week.  相似文献   

15.
The adsorption of albumin (BSA: bovine serum albumin) on passivated chromium surfaces was studied in deaerated sulphate solutions as a function of potential (in the passive state) and pH (from 4 to 10). In situ switch-flow cell EQCM measurements were coupled to ex situ XPS analyses. EQCM results showed that (i) the initial adsorption rate is about 3.3 ng cm−2 s−1 which corresponds to 3 × 1010 molecules cm−2 s−1, irrespective of the passive potential and pH, and (ii) the passive potential as well as the pH have no influence on the amount of adsorbed BSA (Δm = 440 ± 70 ng cm−2 on the adsorption plateau). From the XPS N 1s and C 1s signals, which provide a fingerprint for the protein, it can be concluded that BSA is adsorbed on the Cr surface and is chemically intact. The XPS results show that (i) when increasing the passive potential, the oxide layer thickness increases (mean value: dox = 2.2 ± 0.2 nm), and (ii) the passive film is not modified by the adsorption of protein. From combined EQCM and XPS data, a full coverage of the Cr surface by the adsorbed proteins (γ = 1) is demonstrated at pH 4 (whatever the passive potential). The thickness of the continuous BSA layer (hBSA) is 3.3 ± 0.3 nm, which corresponds to one monolayer “side-on”, i.e. oriented parallel to the surface. At pH 5.5 and 10, the adsorbed proteins form islands. The surface coverage is much lower (γ ∼ 0.5), and the height of the protein islands is significantly higher (hBSA ∼ 6.5 nm). The results suggest a strong interaction (partially covalent) between the protein and the passivated chromium surface.  相似文献   

16.
This paper is focused on the in situ radiotracer and voltammetric studies of the induced HSO4/SO42− adsorption at Pt(poly) and Pt(1 1 1) surfaces in 0.1 mol dm−3 HClO4 solution in the course of Cr(VI) electroreduction. Besides this, the sorption behavior of HSO4/SO42− ions on bare Pt(poly) and Pt(1 1 1) electrodes is compared and discussed. From the experimental results it can be stated that: (i) although the extent of bisulfate/sulfate adsorption is strongly dependent upon the crystallographic orientation of Pt surfaces, the maximum coverage on the Pt(1 1 1) does not exceed 0.2 monolayer; (ii) the Cr(VI) electroreduction on both poly- and (1 1 1) oriented platinum proceeds via a ce (chemical-electron-transfer) mechanism to yield Pt surfaces covered with intermediate surface adlayers containing Cr(VI) particles (and reduced Cr-containing adspecies) and ‘strongly bonded’ HSO4/SO42− ions; (iii) while the coverage of platinum surfaces by the intermediate complexes formed in the course of Cr(VI) electroreduction at E > 0.20 V is basically independent of the crystallographic orientation of the Pt electrode, the onset for rapid Cr(VI) reduction is highly affected by the nature and crystallographic orientation of the electrode.  相似文献   

17.
T. Jiang 《Electrochimica acta》2007,52(13):4487-4496
The kinetics of the oxygen reduction reaction (orr) on Cu(h k l) surfaces are investigated in perchloric acid and sulfuric acid solutions using rotating ring disk electrode (RRDCu(h k l)E). Parameters, such as reaction order, kinetic current, rate constant, Tafel slopes as well as the number of electrons transferred are determined. The variation in the activity and reaction pathway with the crystal faces in different electrolytes is related to the surface characteristics of Cu(h k l) and the structure-sensitive inhibiting effect of the adsorbed anions on their surfaces. In 0.1 M HClO4, the difference in activity is clearly observed on Cu(h k l) surfaces (Cu(1 0 0) > Cu(1 1 1) although it is relatively small). The higher activity of Cu(1 0 0) arises from its more open characteristics which may facilitate the co-adsorption of O2. On the other hand, the adsorption of oxygenated species on Cu(1 1 1) at E > −0.35 V induces a 2 e pathway; while a 4 e reduction is observed on Cu(1 0 0) in the entire potential region (−0.70 V < E < −0.10 V). In 0.5 M H2SO4, the sequence in activity between Cu(1 1 1) and Cu(1 0 0) varies with the potentials, i.e., Cu(1 0 0) is initially more active than Cu(1 1 1) at −0.35 V < E < −0.15 V, however, the reversal in the activity between Cu(1 1 1) and Cu(1 0 0) is observed at more negative potentials (−0.45 V < E < −0.35 V). The desorption of strongly adsorbed (bi)sulfate anions on Cu(1 1 1) induces the 2 e reduction via peroxide formation, however, a 4 e reduction is dominant on the Cu(1 0 0) surfaces. The major effect of (bi)sulfate anions and oxygenated species on the orr kinetics and reaction pathway on Cu(h k l) surfaces is the blocking of active copper sites for the adsorption of O2 molecules.  相似文献   

18.
This work describes the study of Te underpotential deposition on Pt in acid media using cyclic voltammetry, rotating ring-disc electrode and electrochemical quartz crystal microbalance techniques. The voltammetric results indicate the presence of two dissolution peaks in the positive scan with a total charge density of 420 μC cm−2. These phenomena are attributed to the deposition of one Te monolayer with the occupancy of two active Pt sites by each ad-atom. This is confirmed by rotating ring-disc electrode results. The electrochemical quartz crystal microbalance (EQCM) experiments yielded the small mass variation of −32 ng cm−2 (while the theoretical one is −140.4 ng cm−2 for a complete Te monolayer). This low value can be attributed to the simultaneous adsorption of water, perchlorate anions and the formation of platinum oxide.  相似文献   

19.
The linear actuation of poly-3,4-ethylenedioxythiophene (PEDOT) films polymerized at different potentials (0.8-1.3 V) at −27 °C in propylene carbonate (PC) solutions of TBACF3SO3 (tetrabutylammonium trifluoromethanesulfonate) was examined under isotonic (constant force) and isometric (constant length) conditions. The actuation properties were evaluated by electrochemomechanical deformation measurements (ECDM) during cyclic voltammetry, square wave potential steps and long term cycling. The ECDM response revealed mixed ion actuation behaviour for PEDOT films polymerized at the potential extremes of 0.8 and 1.3 V. At intermediate polymerization potentials from 0.9 to 1.2 V, cation-driven actuation was observed involving immobilized triflate anions (CF3SO3). Long term experiments (50 cycles) showed that films prepared at polymerization potentials of 0.8 V exhibited mainly anion-driven actuation, during potential steps to and from 1.0 V; conversely PEDOT prepared at a polymerization potential of 1.1 V showed exclusively cation-driven actuation. PEDOT films prepared at a polymerization potential of 1.1 V showed the maximum cation-driven actuation during cyclic voltammetry experiments including long term cycling. SEM images showed an open porous structure in all of the PEDOT films.  相似文献   

20.
O. Koga  S. Teruya  Y. Hori 《Electrochimica acta》2005,50(12):2475-2485
Voltammetric and infrared (IR) spectroscopic measurements were carried out to study adsorbed CO on two series of copper single crystal electrodes n(1 1 1)-(1 1 1) and n(1 1 1)-(1 0 0) in 0.1 M KH2PO4 + 0.1 M K2HPO4 at 0 °C. Reversible voltammetric waves were observed below −0.55 V versus SHE for adsorption of CO which displaces preadsorbed phosphate anions. The electric charge of the redox waves is proportional to the step atom density for both single crystal series. This fact indicates that phosphate anions are specifically adsorbed on the step sites below −0.55 V versus SHE. Voltammetric measurements indicated that (1 1 1) terrace of Cu is covered with adsorbed CO below −0.5 V versus SHE. Nevertheless, no IR absorption band of adsorbed CO is detected from (1 1 1) terrace. Presence of adsorbed CO on (1 1 1) terrace is presumed which is not visible by the potential difference spectroscopy used in the present work. IR spectroscopic measurements showed that CO is reversibly adsorbed with an on-top manner on copper single crystal electrodes of n(1 1 1)-(1 1 1) and n(1 1 1)-(1 0 0) with approximately same wavenumber of CO stretching vibration of 2070 cm−1. The IR band intensity is proportional to the step atom density. Thus CO is adsorbed on (1 1 1) or (1 0 0) steps on the single crystal surfaces. An analysis of the IR band intensity suggested that one CO molecule is adsorbed on every two or more Cu step atom of the monocrystalline surface. The spectroscopic data were compared with those reported for uhv system. The CO stretching wavenumber of adsorbed CO in the electrode-electrolyte system is 30-40 cm−1 lower than those in uhv system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号