首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, it has becoming increasingly important to control the organization of self-assembled monolayers (SAMs) of ω-functionalized thiols for its potential applications in the construction of more complex molecular architectures. In this paper, we report on the spontaneous formation of a SAM of octanedithiol (ODT) as a function of the modification time. Electrochemical techniques such as cyclic voltammetry, double layer capacitance and electrochemical impedance spectroscopy are used for the characterization of this monolayer. The increase in modification time brings about changes in the octanedithiol self-assembled monolayer (ODT-SAM) reductive desorption voltammograms that indicate an evolution toward a more ordered and compact monolayer. This trend has also been found by following the changes in the electron transfer processes of the redox probe K3Fe(CN)6. In fact, the ODT-SAM formed at low-modification time does not significantly perturb the electrochemical response as it is typical of either a low coverage or of the presence of large defects in the layer. Upon increasing the modification time, the voltammograms of the redox probe adopt a sigmoidal shape indicating the existence of pinholes in the monolayer distributed as an array of microelectrodes. The surface coverage as well as the size and distribution of these pinholes have been determined by the impedance technique that gives a more reliable evaluation of these monolayer structural parameters.  相似文献   

2.
3-Pyridinecarboxylic acid (3-PC) adsorbed on low index face electrodes in NaF solution were investigated using in situ Fourier transform-infrared (FTIR) spectroscopy and differential capacity measurements. Two types of vertically adsorbed 3-PC were confirmed on the electrodes, while flat-lying adsorbed species were not observed at the potentials measured. At negative potentials, 3-PC molecules adsorb vertically on the electrode via the lone pair electrons of the pyridine ring nitrogen atom, and at positive potentials, 3-PC adsorbs vertically via the two oxygen atoms of the carboxyl group.  相似文献   

3.
Adsorption of terephthalic acid on Au(1 0 0), Au(1 1 1) and Au(1 1 0) electrodes in neutral solution has been investigated using in situ Fourier transform infrared (FT-IR) spectroscopy, differential capacity measurements and scanning tunneling microscopy (STM). At negative potentials, the terephthalate anions in solution adsorb in a flat orientation onto the electrode via the π electrons of the aromatic ring. At positive potentials, the terephthalate anions adsorb in a vertical orientation via the oxygen atoms of one of the carboxyl groups as a form of dianion. At more positive potentials, the anions adsorb in a vertical orientation as a form of hydrogen terephthalate. For the three electrodes examined, the overtone and/or combination bands, due to vertically oriented hydrogen terephthalate, were observed at 2642 and 2517 cm−1, respectively. For the Au(1 1 1) electrode, STM observations indicated a flat orientation in the form of terephthalic acid.  相似文献   

4.
The synthesis of nanostructures is an emerging area in nanoscience and technology with the possibility of numerous applications in micro and nanodevices. Confined electrodeposition can be achieved through the use of suitable templates, by which the electrodeposition occurs in natural or artificial holes of an insulating layer on a conducting substrate. Here, we present a procedure based on the selective desorption of 3-mercaptopropionic acid (MPA) from a mixture with 1-dodecanethiols (DDT) that forms a compact SAM on Ag(1 1 1). The compound grown is CdS, whose experimental growth conditions are simple and reproducible and make it a good “electrodeposition probe”.  相似文献   

5.
This review describes our recent works on the preparation of Ni-alloy films deposited by electroless deposition as a diffusion barrier layer for ultra large-scale integration (ULSI) interconnects by using an all-wet process.In this process, we create a novel wet fabrication process including a self-assembled monolayer (SAM) as an attachment technique between diffusion barrier layer and a substrate. Our proposal process was applied to the substrates of SiO2/Si and both organic (methyl silsesquioxane) and inorganic (hydrogen silsesquioxane) low-k dielectrics. The key technique of this proposed process is using SAM as a catalyst trapping layer. The Ni-alloy films such as NiB were deposited on catalyzed SiO2 or low-k substrates. The electrolessly deposited NiB films were found to exhibit sufficient thermal stability and an acceptable barrier property for preventing Cu diffusion into the SiO2 and low-k dielectrics.  相似文献   

6.
Adsorption of adenine on Au(1 1 1) and Au(1 0 0) electrodes is studied by cyclic voltammetry, impedance and chronoamperometric measurements in 0.1 M and 0.01 M KClO4 and in 0.5 M NaF solutions. The experiments performed with flame-annealed electrodes at different contact potentials, scan potential limits and scan rates, suggest different adsorption behaviour on the unreconstructed and reconstructed surface domains. This is confirmed by comparing the results obtained with electrochemically annealed unreconstructed and with flame-annealed reconstructed surfaces. In both cases the initial electrode surface state is characterised by the Epzc values. The adsorption on reconstructed surfaces takes place at more positive potentials than on the unreconstructed surfaces and induces the lifting of the reconstruction.The thermodynamic analysis is performed on the chronoamperometric data for adenine desorption on well characterised unreconstructed Au(1 1 1) surfaces. To this end a new methodology of the chronoamperometric experiments is introduced. Quantitative thermodynamic adsorption parameters such as surface tension, Gibbs surface excess, Gibbs energy of adsorption, potential versus Gibbs excess slope and electrosorption valency are determined. Weak chemisorption of adenine is inferred with a molecular orientation independent on the coverage and on the electrode potential. It is proposed that adsorbed adenine molecules adopt a tilted orientation at the surface to facilitate the coordination to the gold atoms.  相似文献   

7.
3-Fluorobenzoic acid adsorbed on Au(1 1 1), Au(1 0 0) and Au(1 1 0) electrodes has been investigated using in situ IR reflection spectroscopy, UV-visible reflectivity measurements, and differential capacity measurements. As determined by IR reflection spectroscopy, the vertically adsorbed 3-fluorobenzoate is the predominant species at positive potentials, and the flat-lying type is adsorbed at negative potentials. In the UV-visible reflectivity measurements, the reflectivity changes for the vertically adsorbed and flat-lying 3-fluorobenzoates on the Au(1 0 0) electrode were observed at different frequency regions. No UV-visible reflectivity signal was observed for the Au(1 1 0) electrode, and it was proved that the UV-visible reflectivity change has a strong single crystal surface dependence. For the vertical configuration, a large contribution between the 5d orbital of Au and the 2p orbital of oxygen in 3-fluorobenzoate was found for the cluster model by DFT calculation.  相似文献   

8.
The application of a recently developed method for the deposition of Pd and Pt on top of a SAM, has been successfully extended to Rh, thus proving the versatility of the new concept. Experimental evidence from cyclic voltammetry, in situ STM and ex situ X-ray photoemission spectroscopy is presented for the deposition of monoatomic high rhodium islands onto a 4-mercaptopyridine self-assembled monolayer on a Au(1 1 1) electrode. By repetitive complexation of the Rh ions to the ring-nitrogen and reduction in a Rh-ion free solution, an almost completely covered SAM is obtained. The consequences of making contacts for molecular electronics are briefly discussed.  相似文献   

9.
Two methods have been compared for preparing artificially phase-separated two-component SAMs on Au(1 1 1) composed of 11-amino-1-undecanethiolates (AUTe) and 10-carboxyl-1-decanethiolates (CDTe), which would form, thermodynamically, a homogeneously mixed binary SAMs. The first method starts with the formation of a phase-separated binary SAM of AUTe and 2-hydroxy-1-ethanethiolate (HETe) as a template of the artificially phase-separated SAM, followed by the selective desorption of HETe domains and succeeding filling of the vacancy with CDTe. The second method utilizes fluoren-9-ylmethyl N-(11-mercaptoundecyl) carbamate (FMUCe) instead of 11-amino-1-undecanethiol in preparing the template. After the filling with CDTe, the 9-fluorenylmethyloxycarbonyl (Fmoc) group is removed to obtain AUTe domains. Both methods yield artificially phase-separated binary SAMs having AUTe domains of tens nanometer across. The molecularly flat SAM surface with nanometer-scale domains of different acid-base and electrostatic properties are thus created. For preparing binary SAMs with a higher degree of phase separation, the second method is a better choice; a more clear-cut phase separation is achieved.  相似文献   

10.
Y. Zhang 《Electrochimica acta》2006,51(18):3674-3679
In the present work, an atomic force microscope (AFM) mounted with a diamond-coated tip was used to scratch through organic monolayer covered Si surfaces to create nanostructures by electrodeposition. The organic layer (1-octadecene) was covalently attached to a hydrogen-terminated Si (1 1 1) surface. Copper was deposited into the nanostructures either by immersion plating or electrodeposition. The morphology of copper deposits was studied using scanning electron microscope (SEM). The influence of the different types of semiconductor substrates (1-octadecene covered n-type Si and p-type Si) and different parameters such as immersion time on the copper deposition morphology is presented. Auger electron spectroscopy (AES) scans were performed to obtain information of the selectivity and the copper deposition. The results show clearly that under optimized conditions the organic layer can be used as an effective mask for the site selective patterning of copper nanostructures on Si.  相似文献   

11.
The electrodeposition of a Ag/Cd ultrathin film on a Au(1 1 1) surface and the formation of a surface alloy during this process have been studied using classical electrochemical techniques and in situ Scanning Tunneling Microscopy (STM). The films were obtained from separate electrolytes containing Ag+ or Cd2+ ions and from a multicomponent solution containing both ions. First, the polarization conditions were adjusted in order to form a Ag film by overpotential deposition. Afterwards, a Cd monolayer was formed onto this Au(1 1 1)/Ag modified surface by underpotential deposition. The voltammetric behavior of the Cd UPD and the in situ STM images indicated that the ultrathin Ag films were uniformly deposited and epitaxially oriented with respect to the Au(1 1 1) surface. Long time polarization experiments showed that a significant Ag-Cd surface alloying accompanied the formation of the Cd monolayer on the Au(1 1 1)/Ag modified surface, independent of the Ag film thickness. In the case of an extremely thin Ag layer (1 Ag ML) the STM images and long time polarization experiments revealed a solid state diffusion process of Cd, Ag, and Au atoms which can be responsible for the formation of different Ag-Cd or Au-Ag-Cd alloy phases.  相似文献   

12.
Rational development of nanotechnology through electrochemistry requires a thorough understanding of electronic, magnetic, as well as atomic level structural details of surfaces under electrochemical environments. Using first principles density functional theory (DFT), we investigated these features in the mechanism of metallizing a self-assembled monolayer of organic molecules attached to a metallic surface with Pd. We focused our studies on the √3 × √3 structure of the 4-mercaptopyridine (4MP)-SAM adsorbed on Au(1 1 1), first elucidating the nature of metal-SAM interactions, and then providing a general mechanism to explain the initial stages of SAM-metallization with Pd. Calculations support that SAM relaxation permits facile aggregation of metal atoms to form a hanging metal overlayer. The calculated electronic structures of possible overlayers interacting with the supporting SAM are compared to experiment.  相似文献   

13.
The electrochemical reduction of nitrate ion was studied by cyclic voltammetry on Pt(1 1 1) and [n(1 1 1) × (1 1 1)] stepped Pt surfaces, where n (=14, 10, 7, 6, 5, 4, 3, 2) is the number of terrace atoms, in 0.1 M HClO4 + 10 mM KNO3. The electrocatalytic nitrate reduction was found to hardly proceed on Pt(1 1 1) in the hydrogen adsorption region, while the electrocatalytic activity was improved with the increase in the step density. Inactivation was observed in the presence of adsorbed hydrogen or nitrate-derived reduced adsorbate, i.e. adsorbed NO, on (1 1 1) step sites. It was, therefore, concluded that the electrocatalytically active NO3 species does not adsorb on the (1 1 1) terraces but on the (1 1 1) monoatomic steps. The nitrate reduction current increased with the step density in a non-linear relationship. The overall current density at 0.21 V (RHE) corresponding to the peak potential of the main electrocatalytic nitrate reduction wave which was maximum at n = 2, abruptly increased with short terraces, i.e. n < 5, where the current wave of adsorbed hydrogen on the Pt stepped surface with comparatively narrow (1 1 1) terraces, denoted as Hnt, also appeared unmodified for n < 5 on voltammograms recorded in 0.1 M HClO4 in the absence of nitrate.  相似文献   

14.
The electrochemical oxidation of CO has been studied on Pt(S)[(n − 1)(1 0 0) × (1 1 0)] electrodes to investigate the effect of the step density in the reaction. This series shows two different trends for long (n ≥ 7) and short terraces. For long terraces, the voltammetric peak shifts towards higher potential as the step density increases, unlike the behaviour observed for other stepped surfaces, which exhibit the opposite behaviour in agreement with the Smoluchowski effect. For short terraces, the “normal” behaviour is observed, that is, as the step density increases the peak shifts towards lower potentials. Chronoamperometric measurements were used to determine rate constants and Tafel slopes using the mean field Langmuir-Hinselwood kinetics. Rate constants follow the same trends as the peak potentials in voltammetry. A Tafel slope of 75 ± 4 mV has been obtained for the surfaces with long terraces whereas a value of the surfaces with short terraces showed a value of 100-120 mV is obtained. This change of slopes is interpreted as a change in the electrochemical behaviour of the species involved in the mechanism, probably, a change in the adsorption isotherm of adsorbed OH. Pt(5 1 0) electrode exhibits an intermediate behaviour between those of long and short terraces with two different peaks that can be associated with both behaviours previously described.  相似文献   

15.
The adsorption/desorption kinetics of adenine on Au(1 1 1) electrodes is studied by Electrochemical Impedance Spectroscopy (EIS) in 0.5 M NaF solutions at four adenine concentrations. The experimental procedure is designed in order to obtain impedance data unaffected by surface reconstruction on the entire potential region of adsorption. The frequency dispersion of the impedance at potentials of the adsorption region has been analysed according to the Frumkin-Melik-Gaykazyan adsorption theory without any “a priori” assumption about the potential dependence of the adsorption rate constant. The analysis provides the values of the adsorption capacitance, Cad, adsorption resistance, Rad and the Warburg coefficient, σad, at every potential, and from them the relaxations times τH and τD. A mixed adsorption-diffusion control has been detected and the specific rate constant of adsorption has been obtained in a wide potential region.  相似文献   

16.
Electrochemical reactivity regarding hydrogen reduction was studied at epitaxially grown Pd monolayers and sub-monolayers on Au(1 1 1) in 0.1 M HClO4 solution. The rate of hydrogen evolution increases with decreasing numbers of layers, and it is considerably higher for sub-monolayers, i.e. the fewer Pd islands are on the surface the higher is the catalytic activity. No clear dependence of the reactivity on the ratio of Pd edge atoms to terrace atoms was found. Possible mechanisms explaining the experimental results are discussed.  相似文献   

17.
The electroreduction of the peroxodisulfate anion on the electrochemically polished (EP) Cd(0 0 0 1) plane has been studied by cyclic voltammetry and rotating disc electrode methods. The rate constant of the heterogeneous electroreduction reaction of the S2O82− anion on the EP Cd(0 0 0 1) plane dependent on electrode polarisation and base electrolyte concentration has been established. The values of apparent transfer coefficient αapp corrected for the double layer effect, noticeably lower than 0.5 for the EP Cd(0 0 0 1) plane, only very weakly depend on the electrode potential but noticeably on the electrolyte concentration, decreasing with the base electrolyte concentration. The very low values of the apparent charge transfer coefficient show that the activationless charge transfer mechanism is probably valid for EP aqueous solution interface in a good agreement with the theoretical models for the high hydrogen overvoltage metals based on the diabatic charge transfer mechanism from the metal to an ion.  相似文献   

18.
Electron transfer (ET) kinetics through n-dodecanethiol (C12SH) self-assembled monolayer on gold electrode was studied using cyclic voltammetry (CV), scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS). An SECM model for compensating pinhole contribution, was used to measure the ET kinetics of solution-phase probes of ferrocyanide/ferricyanide (Fe(CN)64−/3−) and ferrocenemethanol/ferrociniummethanol (FMC0/+) through the C12SH monolayer yielding standard tunneling rate constant () of (4 ± 1) × 10−11 and (3 ± 1) × 10−10 cm s−1 for Fe(CN)64−/3− and FMC0/+ respectively. Decay tunneling constants (β) of 0.97 and 0.96 Å−1 for saturated alkane thiol chains were obtained using Fe(CN)64− and FMC respectively. Also, it was found that methylene blue (MB) molecules are effectively immobilized on the C12SH monolayer and can mediate the ET between the solution-phase probes and underlying gold substrate. SECM-mediated model was used to simultaneously measure the bimolecular ET between the solution-phase probes and the monolayer-immobilized MB molecules, as well as tunneling ET between the monolayer-immobilized MB molecules and the underlying gold electrode, allowing the measurement of kBI = (5 ± 1) × 106 and (4 ± 2) × 107 cm3 mol−1 s−1 for the bimolecular ET and and (7 ± 3) × 10−2 s−1 for the standard tunneling rate constant of ET using Fe(CN)64−/3− and FMC0/+ probes respectively.  相似文献   

19.
The oxidation of formaldehyde and ethanol on both pure Au(1 1 1) and Au(1 1 1) modified by approximately 0.3 monolayer (ML) of spontaneously deposited Ru was studied by cyclic voltammetry (CV) in 0.5 M H2SO4 solution containing either 0.25 M formaldehyde or 0.35 M ethanol. In situ scanning tunneling microscopy (STM) and CV were employed to characterize the Au(1 1 1) and Ru/Au(1 1 1) surfaces. The oxidation of HCHO on Ru/Au(1 1 1) commences at 0.1 V more negative potential than on pure Au(1 1 1). From 0.25 to 0.55 V vs. (Ag/AgCl), the reaction occurs with increasing current, showing a peak at a potential of 0.43 V. It is assumed that the increasing anodic activity of the Ru/Au(1 1 1) surface is associated with the oxidation of some reaction intermediates, facilitated by the presence of Ru in its metallic state. On the other hand, the oxidation of ethanol on Ru/Au(1 1 1) commences at 0.1 V more positive potential than on pure Au(1 1 1), and proceeds in the potential region from 0.2 to 0.5 V with significantly smaller currents, showing a peak at 0.43 V. This inhibiting effect is explained by the deactivation of the most active Au(1 1 1) step sites by high coverage with Ru islands. The appearance of a small peak at 0.43 V is most likely associated to the oxidation of some intermediates during ethanol oxidation at the Ru/Au step sites formed on the Au(1 1 1) terraces by the presence of a small coverage with Ru islands.  相似文献   

20.
We have investigated l-cysteine adsorbed on Ag(1 1 1) electrodes under different conditions. We have employed experimental and theoretical approaches to obtain a better understanding of the adsorbed layer. An estimation of the coverage from charge measurements and the second harmonic response shows C3v symmetry for the interface indicating a (√3 × √3)R°30 overlayer. The theoretical calculations show a variety of different structures with local adsorption energy minima. Particularly, under special initial conditions, zwitterionic structures adsorbed at different sites have been found. This can account for the multiplicity of redox processes observed experimentally below the potential of zero charge. The presence of an external field produces the stabilization of the zwitterion by interaction of the amino/carboxylic groups with the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号