首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
Hui Xia 《Electrochimica acta》2007,52(24):7014-7021
LiCoO2 thin films were prepared by pulsed laser deposition (PLD) on Pt/Ti/SiO2/Si (Pt) and Au/MgO/Si (Au) substrates, respectively. Crystal structures and surface morphologies of thin films were investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The LiCoO2 thin films deposited on the Pt substrates exhibited a preferred (0 0 3) texture with smooth surfaces while the LiCoO2 thin films deposited on the Au substrates exhibited a preferred (1 0 4) texture with rough surfaces. The electrochemical properties of the LiCoO2 films with different textures were compared with charge-discharge, dQ/dV, and Li diffusion measurements (PITT). Compared with the (1 0 4)-textured LiCoO2 thin films, the (0 0 3)-textured thin films exhibited relatively lower electrochemical activity. However, the advantage of the (1 0 4)-textured film only remained for a small number of cycles due to the relatively faster capacity fade. Li diffusion measurements showed that the Li diffusivity in the (0 0 3)-textured film is one order of magnitude lower than that in the (1 0 4)-textured film. As discussed in this paper, we believe that Li diffusion through grain boundaries is comparable to or even faster than Li diffusion through the grains.  相似文献   

2.
Electrodeposition of manganese (Mn) in butylmethylpyrrolidinium bis(trifluoromethylsulfony)imide (BMP-NTf2) ionic liquid is demonstrated in this study. Crystal structures and surface morphologies of the Mn films deposited at various potentials (from −1.8 V to −2.2 V) and temperatures (from 50 °C to 110 °C) were examined with an X-ray diffractometer (XRD) and a scanning electron microscope (SEM), respectively. Experimental results indicate that the deposited Mn films were amorphous in nature; however, their morphologies strongly depended on the deposition conditions. After being anodized in Na2SO4 solution, the deposited Mn was transformed to Mn oxide. Electrochemical properties of the Mn oxides were evaluated using cyclic voltammetry (CV). It was confirmed that the different Mn deposition conditions caused the variations in pseudocapacitive performance of the oxide electrodes. The oxide (∼0.1 mg) anodized from the Mn deposited at −1.8 V and 50 °C had the highest specific capacitance of 402 F/g measured at a CV scan rate of 5 mV/s. Its capacitance retained ratio after 500 CV testing cycles was as high as 94%.  相似文献   

3.
Carbon nanotubes (CNTs) were grown on diamond-coated Si substrates and free-standing diamond wafers to develop efficient thermal interface materials for thermal management applications. High-quality, translucent, free-standing diamond substrates were processed in a 5 kW microwave plasma chemical vapor deposition (CVD) system using CH4 as precursor. Ni and Ni-9%W-1.5%Fe catalyst islands were deposited to nucleate CNTs directly onto the diamond substrates. Randomly-oriented multi-walled CNTs forming a mat of ∼5 μm thickness and consisting of ∼20 nm diameter tubes were observed to grow in a thermal CVD system using C2H2 as precursor. Transmission electron microscopy and Raman analyses confirmed the presence of high-quality CNTs on diamond showing a D/G peak ratio of 0.2-0.3 in Raman spectra.  相似文献   

4.
We present a simple method to functionalize the surface and to modify the structures of aligned multi-wall carbon nanotube (CNT) arrays grown on silicon substrates using CF4 plasma produced by reactive ion etching (RIE). Field emission (FE) measurements showed that after 2 min of plasma treatment, the emission currents were enhanced compared with as-grown CNTs; however, extended treatment over 2 min was found to degrade the FE properties of the film. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy have been employed to investigate the mechanism behind the modified FE properties of the CNT film. The FE enhancement after 2 min of etching could be attributed to favorable surface morphologies, open-ended structures and a large number of defects in the aligned CNT films. On the other hand, deposition of an amorphous layer comprising carbon and fluorine during extended CF4 plasma treatment may hamper the field emission of CNT films.  相似文献   

5.
Bi2Te3−ySey thin films were grown on Au(1 1 1) substrates using an electrochemical co-deposition method at 25 °C. The appropriate co-deposition potentials based on the underpotential deposition (upd) potentials of Bi, Te and Se have been determined by the cyclic voltammetric studies. The films were grown from an electrolyte of 2.5 mM Bi(NO3)3, 2 mM TeO2, and 0.3 mM SeO2 in 0.1 M HNO3 at a potential of −0.02 V vs. Ag|AgCl (3 M NaCl). X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were employed to characterize the thin films. XRD and EDS results revealed that the films are single phase with approximate composition of Bi2Te2.7Se0.3. SEM studies showed that the films are homogeneous and have micronsized granular crystallites.  相似文献   

6.
We have investigated the growth of carbon nanotube (CNT) films on copper substrates by the catalytic chemical vapour deposition route. Ferrocene was used as the catalyst precursor and toluene was the carbon feedstock. The copper substrates were coated with nitride and oxide amorphous ceramic barrier coatings in order to prevent diffusion of the iron catalyst during growth. It was found that virtually no CNT grew on pure copper, but long and densely packed mats of CNTs could be grown on TiN-coated copper. Copper substrates coated with SiNx and In2O3:Sn (ITO) also showed better results than pure copper, although the CNT density was much lower than that obtained from TiN/Cu. Auger electron spectroscopy (AES) showed that Fe diffusion occurred into SiNx/Cu and ITO/Cu substrates, which partially inhibited its catalyst activity. In contrast, AES did not detect the presence of diffused Fe into the TiN coating. The estimation of the diffusion coefficient by AES depth profiles for Fe in SiNx, was 3 · 10−3 nm2 s−1. This value establishes an upper limit for Fe diffusion on substrates for proper nanotube nucleation and growth. Secondary ion mass spectrometry provided complementary information on the composition profiles with depth.  相似文献   

7.
a-Axis- and c-axis-oriented YBa2Cu3O7–δ (YBCO) films were grown on (100) SrTiO3 substrate by laser chemical vapour deposition (laser CVD). The effect of lattice mismatch between films and substrates on in-plane and out-of-plane crystallinity and critical temperature (TC) was investigated. The preferred orientation changed from a-axis to c-axis as the deposition temperature increased from 928 to 1049 K. The c-axis-oriented YBCO showed a minimum of full width at half maximum of 0.5° for the ω-scan and 1.0° for the φ-scan. A smaller mismatch between YBCO films and substrates led a higher crystallinity for in-plane and out-of-plane epitaxial growths. A high TC of 90 K was obtained for the c-axis-oriented YBCO films. The deposition rate of the YBCO films was 58–101 μm h−1, approximately 60–1000 times higher than that of conventional CVD.  相似文献   

8.
Si thin films were deposited directly on stainless steel substrates that act as current collectors using the pulsed laser deposition (PLD) technique. Amorphous Si films of different thicknesses were obtained at the Ar gas pressure of 5 × 10−5 Torr and a temperature of 500 °C but different deposition times. The microstructure and morphology of the films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). The anodic electrochemical performance of the films was examined in the range of 0.005-1.5 V, which revealed excellent cyclic stability without any large capacity fade up to the 70th cycle. The PLD process was suitable for improving the density and adhesion behavior of the films.  相似文献   

9.
The present study aimed at development of a method for synthesizing multi-walled carbon nanotubes (CNTs) on carbon paper substrates (CP) at densities as high as those so far reported for CNTs formed on quartz substrates. Applying conditions optimized for CNTs synthesis on quartz substrates, in which CP was heated at 1073 K, being placed parallel to the flow of m-xylene/ferrocene vapor, resulted in formation of extremely few deposits on CP. Forced vapor flow through the CP greatly improved the frequency and homogeneity of deposition of the Fe-bearing nanoparticles, but these became encapsulated by carbon and deactivated. The addition of H2S to the vapor further enhanced nanoparticle deposition. Moreover, it enabled the subsequent formation of CNTs at densities as high as 2-6 × 109 cm−2. In order to realize such high population densities, it was found essential to perform CVD in a two-stage sequence commencing with nanoparticles deposition at 1073 K followed by the formation and growth of CNTs at 1273 K, with the H2S concentration in the vapor phase optimized throughout within a range of 0.014-0.034 vol%.  相似文献   

10.
Nanostructured CNx thin films were prepared by supersonic cluster beam deposition (SCBD) and systematically characterized by transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The incorporation of nitrogen in the films (0 < x < 0.2) and the nanostructure were controlled by using different synthesis routes. Films containing bundles of well-ordered graphene multilayers, onions and nanotubes embedded in an amorphous matrix were grown alongside purely amorphous films by changing the deposition parameters. Graphitic nanostructures were synthesized without using metallic catalysts. The structural and electronic properties of the films have been studied by EELS. The role played by N in the carbon nanostructures has been deduced from XPS line-shape analysis.  相似文献   

11.
The electrodeposition of MoxRe1−xOy films (0.6 ≤ x ≤ 1) on indium-tin oxide (ITO) coated glass substrates from acidic peroxo-polymolybdo-perrhenate solutions is described. Trends in film growth were established as a function of potential from +0.4 V to −0.7 V vs Ag/AgCl by analyzing the composition and stoichiometry of the deposit using inductively coupled plasma mass spectrometry (ICPMS) and X-ray photoelectron spectroscopy (XPS). These experiments show that the concentration of rhenium increases linearly with the deposition potential and that the deposits are mixed-valent containing up to five different metal oxidation states (i.e., MoIV, MoV, MoVI, Re0, ReIV). Electroanalytical techniques were used to explore the deposition mechanism, including chronocoulometry, cyclic voltammetry, spectroelectrochemistry, and electrochemical quartz crystal nanogravimetry (EQCN). At potentials positive to −0.26 V, perrhenate (ReVIIO4) behaves as a redox mediator to accelerate the deposition of a mixed-valent molybdenum oxide, but at more negative potentials mixed molybdenum-rhenium oxides are produced.  相似文献   

12.
An electro-deposition method was used for the preparation of nano-structured lead dioxide. The lead dioxide films prepared were used as positive electrodes of lead acid batteries. Different parameters such as pulse time (ton), pulse height, and relaxation time (toff) were optimized to obtain higher capacity. Depend on the pulse conditions, a range of different morphologies of various porosities and connectivity was obtained. The resulting batteries were discharged to a cut off voltage of 1.75 V by a pulsed current method. The energy storage ability of the prepared lead acid batteries shows a close relation with the morphology of cathode materials. Maximum capacity was observed when pulse and relaxation time was equal to 0.1 and 5 s, respectively, at a current density of 25 mA cm−2. A change in morphology of lead dioxide from aggregated globular structure to nanofiber was occurred. It was found that the high surface area as well as high connectivity between particles resulted in increased discharge capacity. Analysis of electrochemical impedance spectroscopy (EIS) data revealed that the charge transfer resistance is decreased by a change in morphology from bulk globular to nanofiber as the energy storage test showed. The time dependence of impedance behavior of a sample prepared at ton = 0.1 s and toff = 5 s at 25 mA cm−2 was investigated and the results are discussed.  相似文献   

13.
Zinc electrodeposition in the presence of polyethylene glycol 20000   总被引:2,自引:0,他引:2  
The influence of polyethylene glycol 20000 (PEG20000) on the mechanism of zinc deposition and nucleation was studied by voltammetry, chronoamperometry, and atomic force microscopy (AFM). The electrodeposition of zinc in an electrolytic bath containing PEG20000 occurs via two reduction processes with different energies that involve the same species, ZnCl42−: the first reduction process occurs at EPI′c = −1.25 V, SCE, whereas the second process, which corresponds to the bulk deposition of Zn, occurs at EPII′c = −1.6 V, SCE without significant interference from the hydrogen evolution reaction. Analysis of chronoamperograms obtained in the absence and presence of PEG20000 indicates that distinct nucleation mechanisms are involved during the initial stages of Zn deposition. In the absence of PEG20000, the transients are consistent with the model of 3D diffusion-controlled nucleation. In the presence of PEG20000, however, the transients exhibit a more complex form involving two simultaneous nucleation and growth processes: 2D instantaneous nucleation limited by the incorporation of adatoms (2Di-li) and a diffusion-controlled 3D nucleation mechanism (3D-dc). Characterization of the surface morphologies of the zinc deposits by AFM imaging confirmed our conclusions drawn from the electrochemical studies. SEM analysis showed that the zinc coatings obtained in the presence of PEG20000 at −1.6 V, SCE are smoother and more compact.  相似文献   

14.
Tin-zinc deposits with the Zn content varying from 13 to 0 weight percents (wt%) (close to the eutectic point of the Sn-Zn alloy, Sn-9Zn) were electroplated onto iron-coated copper substrates from a near-neutral (pH 5.0), non-cyanide bath. The corrosion parameters, including open-circuit potential-time curves (EOCP-t), corrosion potentials (ECORR), and corrosion currents (iCORR), of this series of materials before and after reflowing in N2 at 250 °C for 10 min were determined and systemically compared in a brine medium containing 3 wt% NaCl. For the as-prepared deposits, the Sn-5Zn deposit showed an activity very close to but more active than that of Fe in this brine medium. This deposit also exhibited the highest corrosion resistance in the study of electrochemical impedance spectroscopy (EIS). For the reflowed deposits, the anticorrosive ability of Sn-Zn deposits with the Zn content <9 wt% became relatively poorer than that of their corresponding as-prepared counterparts while the Sn-9Zn and Sn-5Zn deposits with reflowing showed the best anticorrosive properties in the 3 wt% NaCl solution. The crystalline information and the surface morphologies of the deposits before and after the reflowing treatment were compared by means of the X-ray diffraction (XRD) and scanning electron microscopic (SEM) analyses.  相似文献   

15.
This paper shows the study of silver-zinc electrodeposition from a thiourea solution with added (ethylenedinitrilo)tetraacetic acid (EDTA), disodium salt and N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), trisodium salt. Voltammetric results indicated that silver-zinc alloy can be obtained applying overpotential higher than 0.495 V, in Tu solution containing 1.0 × 10−1 mol L−1 Zn(NO3)2 + 2.5 × 10−2 mol L−1 AgNO3. This was due to silver(I) ion complexation with thiourea, which shifted the silver deposition potential to more negative value and due to silver-zinc alloy deposition, which occurred at potentials more positive than the potential to zinc deposition alone. EDTA or HEDTA did not significantly affect the silver and zinc deposition potentials, but decreased the current density for silver-zinc deposition. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses of the silver-zinc deposits showed that the morphology and composition changed as a function of the conditions of deposition, viz, deposition potential (Ed), deposition charge density (qd) and solution composition (silver, EDTA and HEDTA concentrations). EDS analysis of the deposits showed sulphur (S) incorporated into the silver-zinc deposit, while SEM images showed that this sulphur content seemed to improve the silver-zinc morphology, as did the presence of EDTA and HEDTA in the solution, which enhanced the sulphur incorporation into the silver-zinc deposit. X-ray diffraction (XRD) analysis of the silver-zinc deposit showed that it was amorphous, irrespective of its composition and morphology.  相似文献   

16.
LaNiO3 thin films were deposited on SrLaAlO4 (1 0 0) and SrLaAlO4 (0 0 1) single crystal substrates by a chemical solution deposition method and heat-treated in oxygen atmosphere at 700 °C in tube oven. Structural, morphological, and electrical properties of the LaNiO3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and electrical resistivity as temperature function (Hall measurements). The X-ray diffraction data indicated good crystallinity and a structural preferential orientation. The LaNiO3 thin films have a very flat surface and no droplet was found on their surfaces. Samples of LaNiO3 grown onto (1 0 0) and (0 0 1) oriented SrLaAlO4 single crystal substrates reveled average grain size by AFM approximately 15–30 nm and 20–35 nm, respectively. Transport characteristics observed were clearly dependent upon the substrate orientation which exhibited a metal-to-insulator transition. The underlying mechanism is a result of competition between the mobility edge and the Fermi energy through the occupation of electron states which in turn is controlled by the disorder level induced by different growth surfaces.  相似文献   

17.
Sm0.5Sr0.5CoO3−δ (SSC) cathode films were deposited on CGO (Gd0.1Ce0.9O1.95) electrolyte substrates by electrostatic spray deposition to prepare SSC/CGO/SSC symmetrical cells. Deposition parameters were changed systematically to examine their effects on film microstructure and electrode performance. A set of deposition parameters including a 0.01 M precursor solution containing metal nitrates in a mixture solvent of de-ionized water (0.6 vol%), ethanol (1.5 vol%) and diethyl butyl carbitol (97.9 vol%), a flow rate of 6 ml/h for precursor solution, a deposition temperature of 350 °C and an imposed electric field of 10 kV/3 cm was identified for preparation of films with a highly porous reticular structure. The superior performance of a reticular SSC electrode was evidenced by its low interfacial resistances of 0.275 and 0.018 Ω cm2 measured in 500 and 700 °C, respectively. These values were one-half to one order of magnitude smaller than that of the screen-printed or slurry-painted electrodes.  相似文献   

18.
This article describes optimization of a cycle for the deposition of lead telluride (PbTe) nanofilms using electrochemical atomic layer deposition (ALD). PbTe is of interest for the formation of thermoelectric device structures. Deposits were formed using an ALD cycle on Au substrates, one atomic layer at a time, from separate solutions, containing Pb2+ or HTeO2+ ions. Single atomic layers were formed using surface limited reactions, referred to as underpotential deposition (UPD), so the deposition cycle consisted of alternating UPD of Te and Pb. The Pb deposition potential was maintained at −0.35 V throughout the 100 cycle-runs, while the Te deposition potential was ramped up from −0.55 V to −0.40 V over the first 20 cycles and then held constant for the remaining ALD cycles. Coulometry for the reduction of both Te and Pb indicated coverages near one monolayer, each cycle. Electron probe microanalysis (EPMA) indicated a uniform and stoichiometric deposit, with a Te/Pb ratio of 1.01. X-ray diffraction measurement showed that the thin films had the rock salt structure, with a preferential (2 0 0) orientation for the as formed deposits. No annealing was used. Infrared reflection absorption measurements of PbTe films formed with 50, 65, and 100 cycles indicated strong quantum confinement.  相似文献   

19.
Carbon-nickel composite thin films (600 nm thick) were prepared by dc magnetron sputtering of Ni and C at several temperatures (25-800 °C) on oxidized silicon substrates. By transmission electron microscopy it was found that the composite consisted of Ni (or Ni3C) nanoparticles embedded in a carbon matrix. The metallic nanoparticles were shaped in the form of globular grains or nanowires (of the aspect ratio as high as 1:60 in the sample prepared at 200 °C). The carbon matrix was amorphous, or graphite-like depending on deposition temperature. At low deposition temperatures TS (25-400 °C) the Ni3C nanoparticles were of hcp phase. Samples prepared at TS ? 600 °C contained ferromagnetic fcc Ni nanoparticles. A correlation was found between the structural, electrical and magnetic properties of the composites. To characterise the films, dependences, such as resistivity vs. temperature, current vs. voltage, differential conductivity vs. bias voltage, and magnetoresistivity, were determined. For example, the tunneling effect was found in samples in which the metallic nanoparticles were separated by 2-3 nm thick amorphous carbon. When the metallic nanoparticles were connected by graphite-like carbon regions (having a metallic conductivity, in contrast to a-C), the temperature coefficient of the resistivity became slightly positive. An anisotropic magnetoresistivity of ∼0.1% was found in the sample that contained ferromagnetic columnar fcc Ni. Zero magnetoresistivity was found in the sample in which the metallic nanoparticles were of non-magnetic hcp phase.  相似文献   

20.
Au–ZnO nanowire films have been synthesized by chemical routes, electrochemical deposition (ECD) and chemical bath deposition (CBD) techniques, on zinc foil followed by annealing in air at 400 °C. X-ray diffraction patterns reveal formation of the ZnO wurtzite structure along with binary phases Au3Zn and AuZn3. Scanning electron microscopy shows the presence of ZnO nanowires having several micrometers in length and less than 120 nm in diameter synthesized by ECD and in the range of 70–400 nm using the CBD technique. During the annealing process, different surface morphologies originating from different catalytic effects of Au atoms/layers were observed. In addition, the effect of synthesis routes on crystalline quality and optical properties were studied by Raman and photoluminescence spectrometers indicating varying concentration of defects on the films. The Raman results indicate that Au–ZnO nanowire film prepared by chemical bath deposition route had better crystalline quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号