首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
The reduced C60-[dimethyl-(β-cyclodextrin)]2/Nafion chemically modified electrode is demonstrated to catalyze the electrochemical response of norepinephrine (NE) by cyclic voltammetry. A pair of well-defined redox waves were obtained and the calculated standard rate constant (ks) is 4.4×10−3 cm s−1 at this reduced CME, indicating that the reduced C60-[dimethyl-(β-cyclodextrin)]2 can act as promoter to the electron transfer of NE.  相似文献   

2.
Minjun LiQun Chen 《Polymer》2003,44(9):2793-2798
A series of poly(ethylene oxide) (PEO)/fullerene(C60) complexes are prepared by lyophilization. The intermolecular interaction and molecular motion in the complex are investigated by solid-state 13C NMR spectroscopy. An intense C60 signal due to the intermolecular cross-polarization is observed in the 13C CP/MAS spectra of the complex samples, indicating a high degree of dispersion of C60s in the complexes. By measuring the 13C spin-lattice relaxation times and 1H transverse relaxation times of the complex sample and by comparing the static 13C spectrum of the pure C60 sample with that of the complex sample, it is demonstrated that there exist n-π interactions between the n-orbitals of the PEO ether oxygen and the π-system of C60. The C60 molecules act as physical cross-links in the amorphous region of PEO, which greatly inhibit the mobility of the surrounding PEO chains, while the rapid isotropic rotation of C60 molecules is also reduced to some extent due to the interactions with the polymer chains.  相似文献   

3.
The solubilities of CO2 and the liquid densities in a Brønsted acid-base ionic liquid, [DMFH][Tf2N], composed of N,N-dimethylformamide (DMF) and bis(trifluoromethanesulfonyl)amide (HTf2N) have been investigated at high pressures and at different temperatures. The results were compared with those in DMF and a typical 1-butyl-3-methylimidazolium analogue with the same anion, [BMIM][Tf2N]. The mole fraction scaled solubilities of CO2 in the three liquids showed a slight increase in the following order, DMF < [DMFH][Tf2N] < [BMIM][Tf2N], whereas more remarkable difference was observed in the volume scaled concentrations of CO2, [BMIM][Tf2N] < [DMFH][Tf2N] « DMF, mainly due to the bulkiness of liquid entities.  相似文献   

4.
The influence of the swelling history on the swelling behavior of poly[(N-isopropylacrylamide)-co-(methacrylic acid)] P[(N-iPAAm)-co-(MAA)] random copolymers hydrogels synthesized by free radical polymerization in solution of N-iPAAm and MAA comonomers crosslinked with tetraethylene glycol dimethyl acrylate (TEGDMA) has been studied. The swelling behavior under pH 7 at 18, 29, 39 and 49 °C of this series of copolymers, previously soaked either at pH 2 or 7 has been investigated. The swelling kinetics of these two series of samples displays different behavior as function of the composition and temperature. However, the equilibrium swelling values only show slight dependences on the previous soaking pH and temperature. When samples are soaked at pH 7, then the swelling at pH 7 follows a first order kinetics, irrespective of the copolymer composition or the temperature at which the experiment has been carried out. In this case, the swelling process is very fast and depends only slightly on temperature. The first order rate constant increases with the MAA content in the hydrogel. Furthermore, the swelling rate of copolymer hydrogels soaked at pH 2, show strong dependence on composition and temperature. They follow an autocatalytic swelling kinetics due to the disruption of hydrogen bond arrangements. An initial slow water uptake is followed by an acceleration process, in which water molecules inside the gel help the next water molecules to come in. Two rate constants, a first-order rate constant and an autocatalytic one have been obtained from the kinetics analysis. They have revealed different temperature dependence which may be due to a balance between hydrophobic and hydrogen bond interactions. The temperature dependence of the swelling kinetics is stronger and more complex for copolymers treated under pH 2 than for copolymers soaked under pH 7.  相似文献   

5.
Dependent on the pH of the aqueous phase, the transfer of protonated forms of 2-benzoylpyridine N(4)-phenyl thiosemicarbazone (BPPT) (which has antimicrobial, antifungal and anticytotoxic activities) and 2-benzoylpyridine N(4)-ethyl thiosemicarbazone (BPET) across water/1,2-dichloroethane (1,2-DCE) interface has been studied by cyclic voltammetry. The protonation constants of the ligands ( and ) were determined by spectrophotometry. The standard partition coefficients () and the standard Gibbs energies of ionic (cationic) species of ligands () were calculated from the standard transfer potentials (). The standard Gibbs energies of their transfer () and partition coefficients of neutral species (log PN) were determined by shake-flask method. These thermodynamic parameters were evaluated as a quantitative and qualitative measure of the lipophilicities of two compounds. The differences between the partition coefficients of cationic and neutral form of compounds [diff(log PI+N)] were interpreted by results obtained from voltammetric data. Effect of N(4)-phenyl and ethyl groups for transfer of 2-benzoylpyridine thiosemicarbazone derivatives at macro-liquid/liquid interface was investigated. The antimicrobial activity of BPET was tested against four types of bacteria and found to be active against Staphlylococcus aureus.  相似文献   

6.
7.
The catalytic properties of (VO)2P2O7/α-Sb2O4 mixed oxides system for n-butane mild oxidation have been investigated on two mechanical mixtures (M1 and M2) of the same well crystallized (VO)2P2O7 (reference vanadyl pyrophosphate) with two different morphologies of α-Sb2O4.The M1 mixture of (VO)2P2O7 with α-Sb2O4 (1), prepared by oxidation of Sb2O3, leads to the oxidative dehydrogenation (ODH) of n-butane, whereas the M2 mixture of (VO)2P2O7 with a commercial α-Sb2O4 (2) (Aldrich) with a different morphology improves the maleic anhydride selectivity as compared to the reference (VO)2P2O7 catalyst (synergetic effect). After reaction, no ternary VPSbO phase is detected by XRD and DTA and it was controlled that the two α-Sb2O4 oxides are catalytically inactive.The (VO)2P2O7 reference catalyst which produced only maleic anhydride as mild oxidation product shows by XPS a slightly oxidized surface (14% V5+–86% V4+).Contamination of the (VO)2P2O7 phase by migration of Sb species occurs after catalytic reaction in the case of the M1 mixture as shown by XPS, LEIS and TEM–EDX analysis. XPS showed that (VO)2P2O7 is partially superficially reduced (86% V4+–14% V3+). This feature is consistent with the decrease of acidity as observed by pyridine adsorption–desorption.In opposition with the M1 mixture, no contamination of the (VO)2P2O7 phase is observed after catalytic reaction in the case of the M2 mixture. The XPS study shows, in this case, that (VO)2P2O7 is partially oxidized (30% V5+–70% V4+) at a higher level than for the reference (VO)2P2O7 catalyst. This situation is associated with the increase of selectivity observed for maleic anhydride (synergetic effect).The difference in the catalytic results for the two M1 and M2 mixtures, as compared to the (VO)2P2O7 reference catalyst, can be explained by the alteration of the surface composition of (VO)2P2O7 and the distribution of vanadium oxidation state due to different interaction between Sb2O4and (VO)2P2O7, depending on the orientation of the α-Sb2O4 crystals.  相似文献   

8.
The effectiveness factor; E f , defined as the fraction of the surface that participates effectively in a given reaction, is an important parameter when operating three-dimensional (3D) electrodes. The rotating disk electrode (RDE) technique with the Fe3+/Fe2+ redox couple as a probe reaction has been used for the evaluation of the effectiveness factor of 3D Ti/IrO2 electrodes with different IrO2 loading. For this purpose, steady-state polarization measurements using Ti/IrO2 rotating disk electrodes in 0.5 M Fe3+/Fe2+ in 1 M HCl were carried out under well-defined hydrodynamic conditions. The low-field approximation relation has been used for the estimation of the exchange current densities j 0, of the Fe3+/Fe2+ redox couple. It was found for this redox couple that the effectiveness factor is very low (<2%) and essentially the 2D electrode surface area works effectively in the steady-state polarization measurements.  相似文献   

9.
A potentiometric aluminium sensor, based on the use N,N′-bis(salicylidene)-1,2-cyclohexanediamine (NBSC) as a neutral carrier, in poly(vinyl chloride) (PVC) matrix, is reported. Effect of various plasticizers; 2-nitrophenyloctylether (o-NPOE), tri-n-butyl phosphates (TBP), dioctylpththalate (DOP) & chloronapthalen (CN), and anion excluder, sodium tetraphenylborate (NaTPB) was studied. The best performance was obtained with a membrane composition of PVC: o-NPOE: NBSC: NaTPB ratio (w/w; mg) of 150:150:5:5. The sensor exhibits significantly enhanced selectivity toward Al3+ ions over the concentration range 1.0 × 10−8-1.0 × 10−1 M with a lower detection limit of 5.0 × 10−9 M and a Nernstian slope of 20.3 ± 0.1 mV decade−1 of activity. Influence of the membrane composition and possible interfering ions was investigated on the response properties of the electrode. Fast and stable response, good reproducibility and long-term stability are demonstrated. The sensor shows response time of <5 s and can be used for about 3 months without any considerable divergence in their potential response. Selectivity coefficients determined by matched potential method (MPM) indicate high selectivity for aluminium (III) ion. The proposed electrode shows fairly good discrimination of aluminium (III) from many metal ions. It was successfully applied for direct determination of aluminium (III) in biological, industrial and environmental samples. The electrode can be used in the pH range of 2.0-9.0 and mixtures containing up to 20% (v/v) non-aqueous content. It was used as an indicator electrode in potentiometric titration of aluminium ion vs. EDTA.  相似文献   

10.
Adsorptive separation of CH4/CO2 mixtures was studied using a fixed-bed packed with MIL-53(Al) MOF pellets. Such pellets of MIL-53(Al) were produced using a polyvinyl alcohol binder. As revealed by N2 adsorption isotherms, the use of polyvinyl alcohol as binder results in a loss in overall capacity of 32%. Separations of binary mixtures in breakthrough experiments were successfully performed at pressures varying between 1 and 8 bar and different mixture compositions. The binary adsorption isotherms reveal a preferential adsorption of CO2 compared to CH4 over the whole pressure and concentration range. The separation selectivity was affected by total pressure; below 5 bar, a constant selectivity, with an average separation factor of about 7 was observed. Above 5 bar, the average separation factor decreases to about 4. The adsorption selectivity is affected by breathing of the framework and specific interaction of CO2 with framework hydroxyl groups. CO2 desorption can be realised by mild thermal treatment.  相似文献   

11.
‘Polystyrene-bound 4-(N,N-dimethylamino)pyridine’-copper (PS-DMAP-Cu(ii)) catalysts for the oxidation of 2,6-disubstituted phenols were immobilized by grafting or by partial adsorption on silica and by crosslinking with 2% divinylbenzene. The most active immobilized catalyst is the most flexible, i.e. the grafted one, which however is still six times less active than unbound linear PS-DMAP-Cu(II). The less extended conformation of the adsorbed polymeric catalyst exhibits a significantly lower activity. For the crosslinked catalyst, indications were obtained that diffusional limitations occur. Application of all three types of immobilized PS-DMAP based catalysts in a continuous stirred tank (CST) reactor was unsuccessful. The phenol conversion drastically decreased in time. This loss of activity could be explained by the destructive effect of water: interaction of reaction water with the very basic DMAP ligands may result in the production of an excess of hydroxide which, according to our earlier work, deactivates the catalyst. A catalyst based on the less basic poly(styrene-co-4-vinylpyridine) adsorbed onto silica exhibited an invariable phenol conversion in the CST reactor for at least 230 h.  相似文献   

12.
In situ electrochemical-scanning tunneling microcopy (EC-STM) was employed to investigate the etching dynamics of the moderately doped n-Si(1 1 1) electrode during cyclic voltammetric perturbation and at the seven different potentials including the open circuit potential (OCP) in 40% NH4F solution at pH 10, which was prepared from 40% NH4F and concentrated NH4OH solution. The etching rate was significant at OCP and showed an exponential dependence on the potential applied to the silicon substrate electrode. Although some triangular pits were generated at the Si(1 1 1) surface, at the potentials more negative than OCP the site dependence in the removal of surface silicon atoms prevailed and led to the atomically flat Si(1 1 1):H surfaces with sharply defined steps of the step height 3.1 Å, where the interatomic distance of 3.8 Å was observed with a three-fold symmetry. At the potentials sufficiently more positive than OCP, macroporous hole was formed to limit further in situ EC-STM study. The results were compared with in situ EC-STM studies of the etching reaction of n-Si(1 1 1):H in the aqueous solution of dilute ammonium fluoride at pH 5, 40% NH4F at pH 8, and 1 M NaOH reported in the literature.  相似文献   

13.
The kinetics absorption of CO2 into aqueous blends of 2-(1-piperazinyl)-ethylamine (PZEA) and N-methyldiethanolamine (MDEA) were studied at 303, 313, and 323 K using a wetted wall column absorber. The PZEA concentrations in the blends with MDEA varied from 0 to to see the effect of PZEA as an activator in the blends with two different total amine concentrations (1.0 and ). Based on the pseudo-first-order condition for the CO2 absorption, the overall second-order reaction rate constants were determined from the kinetic measurements. The kinetic rate parameters were calculated and presented at each experimental condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号