首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi walled carbon nanotube modified carbon-ceramic electrode (MWCNT/CCE) was employed for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The MWCNT/CCE displayed very good electrochemical catalytic activities with respect to CCE. The oxidation over-potentials of AA, DA and UA decreased dramatically, and their oxidation peak currents increased significantly at MWCNT/CCE compared to those obtained at the bare CCE. Differential pulse voltammetry was used for the simultaneous determination of AA, DA and UA in their ternary mixture. The peak separation between AA and DA, and DA and UA was large up to 205 and 160 mV, respectively. The calibration curves for AA, DA and UA were obtained in the range of 15.00-800.00, 0.50-100.00, and 0.55-90.00 μM, respectively. The detection limits (S/N = 3) were 7.71, 0.31, and 0.42 μM for AA, DA and UA, respectively.The present method was applied to the determination of AA, DA and UA in human serum and some commercial pharmaceutical samples, using standard adding method and the results were quite promising.  相似文献   

2.
In this work, the composite carbon-polyvinylchloride (C-PVC) was used as an electrode for the detection of dopamine, ascorbic acid, uric acid and their mixtures by differential pulse voltammetry (DPV). The results showed that the untreated C-PVC electrode was selective and stable for the oxidation of dopamine in a mixture containing uric acid and an excess of ascorbic acid in acidic medium. The pre-treated C-PVC electrode in a neutral medium exhibited good resolution of the mixture components in the micro molar concentration range of DA. The ageing of the C-PVC electrode during longer time periods did not affect the peak potential and the detection of dopamine, uric acid and ascorbic acid in 0.1 M H2SO4. The practical analytical utility of the C-PVC electrode was demonstrated by the measurement of uric acid in human urine and serum samples without any preliminary pre-treatment.  相似文献   

3.
A gold electrode surface was modified using a dinuclear copper complex [CuII2 (Ldtb)(μ-OCH3)](BPh4) and then coated with a chitosan film. This biomimetic polymer film-coated electrode was employed to eliminate the interference from ascorbic acid and uric acid in the sensitive and selective determination of dopamine. The optimized conditions obtained for the biomimetic electrode were 0.1 M phosphate buffer solution (pH 8.0), complex concentration of 2.0 × 10−4 M, 0.1% of chitosan and 0.25% of glyoxal. Under the optimum conditions, the calibration curve was linear in the concentration range of 4.99 × 10−7 to 1.92 × 10−5 M, and detection and quantification limits were 3.57 × 10−7 M and 1.07 × 10−6 M, respectively. The recovery study gave values of 95.2-102.6%. The lifetime of this biomimetic sensor showed apparent loss of activity after 70 determinations. The results obtained with the modified electrode for dopamine quantification in the injection solution matrix were in good agreement with those of the pharmacopoeia method.  相似文献   

4.
A polymerized film of eriochrome black T (EBT) was prepared on the surface of a glassy carbon (GC) electrode in alkaline solution by cyclic voltammetry (CV). The redox response of the poly(EBT) film at the GC electrode appeared in a couple of redox peak in 0.1 M hydrochloride and the pH dependent peak potential was −55.1 mV/pH which was close to the Nernst behavior. The poly(EBT) film-coated GC electrode exhibited excellent electrocatalytic activity towards the oxidations of dopamine (DA), ascorbic acid (AA) and uric acid (UA) in 0.05 mM phosphate buffer solution (pH 4.0) and lowered the overpotential for oxidation of DA. The polymer film modified GC electrode conspicuously enhanced the redox currents of DA, AA and UA, and could sensitively and separately determine DA at its low concentration (0.1 μM) in the presence of 4000 and 700 times higher concentrations of AA and UA, respectively. The separations of anodic peak potentials of DA-AA and UA-DA reached 210 mV and 170 mV, respectively, by cyclic voltammetry. Using differential pulse voltammetry, the calibration curves for DA, AA and UA were obtained over the range of 0.1-200 μM, 0.15-1 mM and 10-130 μM, respectively. With good selectivity and sensitivity, the present method provides a simple method for selective detection of DA, AA and UA in biological samples.  相似文献   

5.
Amorphous silica gel modified carbon paste electrode (CPE) offers substantial improvements in voltammetric sensitivity and selectivity towards determination of dopamine (DA). Cyclic voltammetry of Fe(CN)63−/4− as a negatively charged probe revealed that the surface of the silica gel modified carbon paste electrode had a high density of negative charge at pH 8.0. Therefore, the modified electrode adsorbed DA (pKa = 8.9) and enhanced its voltammetric response while repulsed ascorbic acid (AA) (pKa = 4.2) and uric acid (UA) (pKa = 5.4) and inhibited their interfering effects. The influence of various experimental parameters including percent of silica gel in the CPE, pH of solution, and accumulation time and potentials, on the voltammetric response of DA was investigated. At the optimum conditions, the analytical curve was linear for dopamine concentrations from 2.0 × 10−7 to 1.0 × 10−6 mol L−1 and 2.0 × 10−6 to 1.5 × 10−4 mol L−1 with a detection limit (3σ) of 4.8 × 10−8 mol L−1. The prepared electrode was used for determination of DA spiked into DA injection and human serum samples, and very good recovery results were obtained over a wide concentration range of DA.  相似文献   

6.
The electrochemical behavior of ascorbic acid (AA) and uric acid (UA) at the surface of a carbon-paste electrode modified with incorporate thionine-nafion ion-paired was thoroughly investigated. The results show the presence of nafion inside the matrix of modified electrode, because of the effective ion-pairing and hydrophobic interactions, significantly enhances the stability of thionine as an electron mediator inside the modified electrode. A high reproducibility in voltammetric response to analyte species results because of this enhancement. The cyclic voltammetric studies using the prepared modified electrode show the best electrocatalytic property for the electro-oxidation of AA and noticeable decrease in anodic overpotential. Although the catalytic effect is observed to some extent for UA, the property cannot be seen for other biologically reducing agents such as cysteine. The voltammetric studies using the thionine-nafion modified electrode show two well-resolved anodic peaks for AA and UA, revealing the possibility of the simultaneous electrochemical detection of these compounds in the presence of biological thiols. The detection limits of 5 × 10−8 and 5 × 10−7 M were obtained in differential pulse voltammetric (DPV) measurements for UA and AA, respectively. Spectrophotometric investigations were used to confirm the selective catalytic effect of thionine in oxidation of AA and to some extent, UA. The detection system is stable (R.S.D. for the slope of the calibration curves was less than 4% for six measurements in one month) and is of high selectivity for electro-oxidation of AA and UA in complex biological and clinical matrices. The prepared modified electrode is applied for the DPV measurement of AA in pharmaceutical preparations. Also, the electrode is used to determine UA in human urine and serum samples and recovery of the amounts of UA added to these complex samples.  相似文献   

7.
A novel electrochemical sensor has been constructed by using a glassy carbon electrode (GCE) coated with nafion/sodium dodecylbenzenesulfonate (SDBS). Differential pulse voltammetry (DPV) was used to study the electrochemical behaviors of dopamine (DA) and uric acid (UA). An optimum of 5 mM SDBS together with 0.05 wt% of nafion was used to improve the resolution and the determination sensitivity successfully. In 0.1 M phosphate buffer solution (pH 6.5), the modified electrode exhibited high electrocatalytical activity toward the oxidation of DA and UA with obvious reduction of overpotential. Compared with bare GCE, the modified electrode resolved the voltammetric response of DA and UA into two well-defined voltammetric peaks by DPV, which can be used for simultaneous determination of these species in mixture. The peak currents obtained from DPV were linearly related to the concentrations of DA and UA in the ranges of 4.0 × 10−7–8.0 × 10−5 M and 4.0 × 10−6–8.0 × 10−4 M, respectively. The detection limit of DA and UA (signal-to-noise ration was 3) were 5.0 × 10−8 and 4.0 × 10−7 M, respectively.  相似文献   

8.
The copper was deposited on glassy carbon (GC) and indium tin oxide (ITO) electrodes by electrochemical method. The copper structures on electrode were characterized by atomic force microscope, X-ray diffractometeric pattern and differential pulse voltammetric studies. Optimal conditions for uniform growth of copper structures on the electrode were established. Voltammetric sensor was fabricated using the copper deposited GC electrode for the simultaneous detection and determination of uric acid (UA) and homovanillic acid (HVA) in the presence of excess concentrations of ascorbic acid (AA). The voltammetric signals due to AA and UA oxidation were well separated with a potential difference of 400 mV and AA did not interfere with the measurement of UA and HVA at the GC/Cu electrode. Linear calibration curves were obtained in the concentration range 1-40 μM for AA and 20-50 μM for UA at physiological pH and a detection limit of 10 nM of UA in the presence of 10-fold excess concentrations of AA was achieved. The simultaneous detection of submicromolar concentrations of AA, UA and HVA was achieved at the GC/Cu electrode. The practical utility of the present GC/Cu modified electrode was demonstrated by measuring the AA content in Vitamin C tablet, UA content in human urine and blood serum samples with satisfactory results.  相似文献   

9.
A modified carbon-paste electrode (CPE) is prepared by incorporating thionine-nafion supported on multi-walled carbon nanotube (MWCNT). The electrochemical behavior of dopamine (DA) and ascorbic acid (AA) on the surface of the modified electrode is investigated by cyclic voltammetry (CV). The results show that thionine effectively immobilized in the matrix of the paste by using an appropriate mixture of nafion/MWCNT under the ultrasonic condition. On the other hand, presence of nafion enhances the stability of the thionine supported by MWCNT in the composite electrode and improves the reproducibility of the surface of the modified electrode under renewing process by polishing. The results of cyclic and differential pulse voltammetric investigations show that the modified electrode possesses an efficient electrocatalytic activity for the electrochemical oxidation of DA and AA and a peak potential separation nearly 379 mV is resulted for two compounds. The prepared modified electrode does not show any considerable response toward the electro-oxidation of sulfhydryl compounds, such as, cysteine, penicillamine and glutathione, revealing a good selectivity for voltammetric response to AA and DA in clinical and pharmaceutical preparations. The effective electrocatalytic property, excellent peak resolution and ability for masking the voltammetric responses of the other biologically reducing agents, make the modified electrode suitable for simultaneous and sensitive voltammetric detection of sub-micromolar amounts of AA and DA.  相似文献   

10.
A new gold nanoparticles-modified electrode (GNP/LC/GCE) was fabricated by self-assembling gold nanoparticles to the surface of the l-cysteine-modified glassy carbon electrode. The modified electrode showed an excellent character for electrocatalytic oxidization of uric acid (UA) and ascorbic acid (AA) with a 0.306 V separation of both peaks, while the bare GC electrode only gave an overlapped and broad oxidation peak. The anodic currents of UA and AA on the modified electrode were 6- and 2.5-fold to that of the bare GCE, respectively. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of UA and AA has been explored at the modified electrode. DPV peak currents of UA and AA increased linearly with their concentration at the range of 6.0 × 10−7 to 8.5 × 10−4 mol L−1 and 8.0 × 10−6 to 5.5 × 10−3 mol L−1, respectively. The proposed method was applied for the detection of UA and AA in human urine with satisfactory result.  相似文献   

11.
Palladium (Pd) incorporated poly (3,4-ethylenedioxythiophene) (PEDOT) films were synthesized through an electrochemical route and characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrochemical study showed catalytic oxidation of dopamine (DA) with optimum loading of Pd. DA and uric acid (UA) were detected using differential pulse voltammetry (DPV). In the presence of ascorbic acid (AA), DA-AA showed peak potential separation of 0.19 V while 0.32 V between UA-AA on Pd-incorporated PEDOT. These peak separations are large enough for sensing DA and UA in the presence of AA. DA and UA exhibited linear calibration plots and the minimum detection limits are 0.5 and 7 μM respectively. On Pd-PEDOT, the reversibility of DA oxidation was found to increase compared to bare glassy carbon electrode (GCE) and PEDOT modified GCE. Fouling effects were also found to be minimal making Pd-PEDOT composite suitable for electroanalysis.  相似文献   

12.
A novel conductive composite film containing functionalized multi-walled carbon nanotubes (f-MWCNTs) with poly (neutral red) (PNR) was synthesized on glassy carbon electrodes (GC) by potentiostatic method. The composite film exhibited promising electrocatalytic oxidation of mixture of biochemical compounds such as ascorbic acid (AA), dopamine (DA) and uric acid (UA) in pH 4.0 aqueous solutions. It was also produced on gold electrodes by using electrochemical quartz crystal microbalance technique, which revealed that the functional properties of composite film were enhanced because of the presence of both f-MWCNTs and PNR. The surface morphology of the polymer and composite film deposited on transparent semiconductor tin oxide electrodes were studied using scanning electron microscopy and atomic force microscopy. These two techniques showed that the PNR was fibrous and incorporated on f-MWCNTs. The electrocatalytic responses of neurotransmitters at composite films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). These experiments revealed that the difference in f-MWCNTs loading present in the composite film affected the electrocatalysis in such a way, that higher the loading showed an enhanced electrocatalytic activity. From further electrocatalysis studies, well separated voltammetric peaks were obtained at the composite film modified GC for AA, DA and UA with the peak separation of 0.17 V between AA-DA and 0.15 V between DA-UA. The sensitivity of the composite film towards AA, DA and UA in DPV technique was found to be 0.028, 0.146 and 0.084 μA μM−1, respectively.  相似文献   

13.
A novel modified glassy carbon electrode (GCE) with a binuclear copper complex was fabricated using a cyclic voltammetric method in phosphate buffer solution. This modified electrode shows very efficient electrocatalytic activity for anodic oxidation of both dopamine (DA) and ascorbic acid (AA) via substantial decrease in anodic overpotentials for both compounds. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using this modified electrode show two well-resolved anodic waves for the oxidation of DA and AA in mixed solution, which makes it possible for simultaneous determination of both compounds. Linear analytical curves were obtained in the ranges 2.0–120.0 μM and 5.0–160.0 μM for DA and AA concentrations by using DPV methods, respectively. The detection limits were 1.4 × 10−6 M of DA and 2.8 × 10−6 M of AA. This electrode was used for AA and DA determinations in medicine and foodstuff samples with satisfactory results.  相似文献   

14.
We report here on a simple tyrosinase (TYR) modified electrode designed through the covalent bonding of the enzyme with poly (indole-5-carboxylic acid) (PIn5COOH) conducting polymer. This electrode was applied to the amperometric detection of dopamine (DA) in the presence of ascorbic acid (AA), uric acid (UA) and their mixtures, in the concentration range and ratios similar to those found in blood serum. Our experiments demonstrate that the presence of these interferents (AA, UA) does not affect the selectivity of such electrode towards dopamine with linear concentration dependence in the range of 0.5–20 μM, depending on the experimental conditions, however its sensitivity depends on the type and amount of interferent present. The lower limit of detection of DA in the presence of high AA (1000 fold) or UA (500 fold) concentration was found to be 0.1–0.5 μM. The sensitivity for DA detection is 6.2 A/M cm2 with UA and 2.3 A/M cm2 with AA present as interfering agents. For both interferents present in the ratio 12.5:1 (AA:UA), the sensitivity drops to the value of ca. 1.3 A/M cm2. The Michaelis–Menten (KM) constant and Imax values were evaluated, showing improved electrode sensitivity towards dopamine as judged from the decrease of the Michaelis–Menten constant.  相似文献   

15.
A carbon paste electrode (CPE) modified with thionine immobilized on multi-walled carbon nanotube (MWCNT), was prepared for simultaneous determination of ascorbic acid (AA) and acetaminophen (AC) in the presence of isoniazid (INZ). The electrochemical response characteristics of the modified electrode toward AA, AC and INZ were investigated by cyclic and differential pulse voltammetry (CV and DPV). The results showed an efficient catalytic role for the electro-oxidation of AA and AC, leading to a remarkable peak resolution (∼303 mV) for two compounds. On the other hand, the presence of INZ, which is considered as important drug interference for AC, does not affect the voltammetric responses of these pharmaceuticals. The mechanism of the modified electrode was analyzed by monitoring the CVs at various potential sweep rates and pHs of the buffer solutions. Under the optimum conditions, the calibration curves for AA, AC and INZ were obtained in the range of 1 × 10−6 to 1 × 10−4 M, 1 × 10−7 to 1 × 10−4 M and 1 × 10−6 to 1 × 10−4 M, respectively. The prepared modified electrode shows several advantages such as simple preparation method, high sensitivity, long-time stability, ease of preparation and regeneration of the electrode surface by simple polishing and excellent reproducibility. The proposed method was applied to determination of AA, AC and INZ in commercial drugs and in plasma samples and the obtained results were satisfactory.  相似文献   

16.
This paper reports the selective determination of norepinephrine (NEP) in the presence of very important interferences, ascorbic acid (AA) and uric acid (UA) using electropolymerized film of 2-amino-1,3,4-thiadiazole (p-ATD) modified glassy carbon (GC) electrode in 0.20 M phosphate buffer solution (pH 5.0). The bare GC electrode does not separate the voltammetric signals of AA, NEP and UA. However, p-ATD modified GC electrode not only resolved the voltammetric signals of AA, NEP and UA with potential differences of 150 and 130 mV between AA–NEP and NEP–UA, respectively but also dramatically enhanced the oxidation peak currents of them when compared to bare GC electrode. The modified electrode showed an excellent selectivity towards NEP even in the presence of 100-fold excess of AA and UA. The amperometric current was linearly increased from 40 nM to 25 μM for NEP and the lowest detection limit was found to be 0.17 nM (S/N = 3). The practical application of the modified electrode was demonstrated by determining NEP in norepinephrine hydrochloride injection.  相似文献   

17.
A biosensor electrode possessing highly sensitive and selective determination of dopamine (DA) is fabricated. This electrode, a silver (Ag) thin film on indium-tin-oxide glass, is treated with a silver sulfide (Ag2S) film using electrochemical deposition. Active Ag ion is easier to form on Ag2S than on pristine Ag, which prefers to attract ascorbic acid (AA). The Ag2S layer reduces the oxidation potential of AA due to the electrostatic interaction, which results in well-separation of mixed oxidation responses to both of DA and AA. Besides, the Ag2S-modified electrode exhibits dramatic electrocatalytic effect on the oxidation of DA in the presence of AA. In 0.1 M phosphate buffer solution at pH ∼ 7.0, the differential pulse voltammetric peak intensity linearly correlates with DA concentration in two regions, viz. 1.0–10, and 10–100 μM, with correlation coefficient of 0.998 and 0.995, respectively. The lowest concentration limit of 1.0 μM DA can be detected. The interference of AA effectively diminishes in the mixed solution. These features make the Ag2S significant for selective and sensitive measurement of DA in the presence of excess AA.  相似文献   

18.
研究了聚甲苯胺蓝修饰的玻碳电极的制备及其对多巴胺和抗坏血酸的电催化作用.由于多巴胺和抗坏血酸在该修饰电极的氧化还原电位相差约0.190 V(vs SCE),在同一溶液中,两者无需分离可以分别检出而互不干扰.其可检测的线性范围分别为4~1.8 mmol/L和2.0~ 3.2 mmol/L,检测下限分别为1.4 μmol/L和0.8μmol/L.  相似文献   

19.
This paper describes the development, electrochemical characterization and utilization of a novel modified molybdenum (VI) complex-carbon nanotube paste electrode for the electrocatalytic determination of isoproterenol (IP). The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV) that showed a shift of the oxidation peak potential of IP at 175 mV to less positive value, compared with an unmodified carbon paste electrode. Differential pulse voltammetry (DPV) in 0.1 M phosphate buffer solution (PBS) at pH 7.0 was performed to determine IP in the range from 0.7 to 600.0 μM, with a detection limit of 35.0 nM. Then the modified electrode was used to determine IP in an excess of uric acid (UA) and folic acid (FA) by DPV. Finally, this method was used for the determination of IP in some real samples.  相似文献   

20.
Functionalized polypyrrole film were prepared by incorporation of [Fe(CN)6]4− as a doping anion, during the electropolymerization of pyrrole onto a carbon paste electrode in an aqueous solution by potentiostatic method. The electrochemical behavior of dopamine (DA) and ascorbic acid (AA) in one solution was studied at the surface of bare and modified carbon paste electrodes using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and differntial pulse voltammetry (DPV) methods. The well separated anodic peaks for oxidation of DA and AA were observed at the surface of the modified carbon paste electrode under optimum condition (pH 6.00), which can be used for determination of these species simultaneously in mixture by LSV and DPV methods. The linear analytical curves were obtained in the ranges of 0.10-1.00 mM and 0.10-0.95 mM for ascorbic acid and 0.10-1.20 mM and 0.20-0.95 mM for dopamine concentrations using LSV and DPV methods, respectively. The detection limits (2σ) were determined as 3.38 × 10−5 M and 1.34 × 10−5 M of ascorbic acid and 3.86 × 10−5 M and 1.51 × 10−5 M of dopamine by CV and DPV methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号