首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper analyzes the overload retardation effect (ORE) on the fatigue crack growth (FCG) of cold drawn prestressing steel when different loading sequences are used. The ORE is more intense for elevated load decrease or for low initial stress intensity factor (SIF) range ΔK0. A transient stage can be observed in the Paris curve (da/dN–ΔK) when the KmaxΔK value suddenly decreases, associated with the ORE and with the evolution of the plastic zone and compressive residual stresses near the crack tip. In tests with Kmax decrease, a small zone appears related to FCG initiation, with a fatigue fractography resembling the tearing topography surface (TTS) mode, and associated with a decrease of crack tip opening displacement (CTOD).  相似文献   

3.
A two parameter driving force for fatigue crack growth analysis   总被引:3,自引:0,他引:3  
A model for fatigue crack growth (FCG) analysis based on the elastic–plastic crack tip stress–strain history was proposed. The fatigue crack growth was predicted by simulating the stress–strain response in the material volume adjacent to the crack tip and estimating the accumulated fatigue damage. The fatigue crack growth was regarded as a process of successive crack re-initiation in the crack tip region. The model was developed to predict the effect of the mean stress including the influence of the applied compressive stress. A fatigue crack growth expression was derived using both the plane strain and plane stress state assumption. It was found that the FCG was controlled by a two parameter driving force in the form of: . The driving force was derived on the basis of the local stresses and strains at the crack tip using the Smith–Watson–Topper (SWT) fatigue damage parameter: D=σmaxΔε/2.The effect of the internal (residual) stress induced by the reversed cyclic plasticity was accounted for the subsequent analysis. Experimental fatigue crack growth data sets for two aluminum alloys (7075-T6 and 2024-T351) and one steel alloy (4340) were used for the verification of the model.  相似文献   

4.
The influence of welding residual stresses in stiffened panels on effective stress intensity factor (SIF) values and fatigue crack growth rate is studied in this paper. Interpretation of relevant effects on different length scales such as dislocation appearance and microstructural crack nucleation and propagation is taken into account using molecular dynamics simulations as well as a Tanaka–Mura approach for the analysis of the problem. Mode I SIFs, KI, were calculated by the finite element method using shell elements and the crack tip displacement extrapolation technique. The total SIF value, Ktot, is derived by a part due to the applied load, Kappl, and by a part due to welding residual stresses, Kres. Fatigue crack propagation simulations based on power law models showed that high tensile residual stresses in the vicinity of a stiffener significantly increase the crack growth rate, which is in good agreement with experimental results.  相似文献   

5.
The fatigue crack propagation relation da/dN = f(R)ΔK2 can be derived with three assumptions: small scale yielding, material homogeneity and that crack tip stresses and strains are not strongly affected by plate thickness. f(R) is a constant at a given stress ratio, R. The effects of plate thickness and stress ratio on crack tip deformation and fatigue crack growth in 2024-T351 aluminum alloy were studied. High ΔK level in a thin specimen causes crack tip necking. Necking is more pronounced at high stress ratio. Necking causes high maximum strain near a crack tip, εmax, and fast crack growth rate. In order to avoid the effects of crack tip necking, plates thicker than 2.5 (ΔK/σY(c))2 should be used.  相似文献   

6.
For prediction of the fatigue crack growth (FCG) behavior under cyclic compression, a plasticity-corrected stress intensity factor (PC-SIF) range ΔKpc is proposed on the basis of plastic zone toughening theory. The FCG behaviors in cyclic compression, and the effects of load ratio, preloading and mean load, are well predicted by this new mechanical driving force parameter. Comparisons with experimental data showed that the proposed PC-SIF range ΔKpc is an effective single mechanical parameter capable of describing the FCG behavior under different cyclic compressive loading conditions.  相似文献   

7.
The fatigue crack growth behavior of an austenitic metastable stainless steel AISI 301LN in the Paris region is investigated in this work. The fatigue crack growth rate curves are evaluated in terms of different parameters such as the range of stress intensity factor ΔK, the effective stress intensity factor ΔKeff, and the two driving force parameter proposed by Kujawski K1.The finite element method is used to calculate the stress intensity factor of the specimens used in this investigation. The new stress intensity factor solution has been proved to be an alternative to explain contradictory results found in the literature.Fatigue crack propagation tests have been carried out on thin sheets with two different microstructural conditions and different load ratios. The influence of microstructural and mechanical variables has been analyzed using different mechanisms proposed in the literature. The influence of the compressive residual stress induced by the martensitic transformation is determined by using a model based on the proposal of McMeeking et al. The analyses demonstrate the necessity of including Kmax as a true driving force for the fatigue crack growth. A combined parameter is proposed to explain the effects of different variables on the fatigue crack growth rate curves. It is found that along with residual stresses, the microcracks and microvoids are other factor affecting the fatigue crack growth rate in the steel studied.  相似文献   

8.
Mechanisms for corrosion fatigue crack propagation   总被引:2,自引:0,他引:2  
ABSTRACT The corrosion fatigue crack growth (FCG) behaviour, the effect of applied potential on corrosion FCG rates, and the fracture surfaces were studied for high‐strength low‐alloy steels, titanium alloys, and magnesium alloys. During investigation of the effect of applied potential on corrosion FCG rates, polarization was switched on for a time period in which it was possible to register the change in the crack growth rate corresponding to the open‐circuit potential and to measure the crack growth rate under polarization. Due to the higher resolution of the crack extension measurement technique, the time rarely exceeded 300 s. This approach made possible the observation of a non‐single mode effect of cathodic polarization on corrosion FCG rates. Cathodic polarization accelerated crack growth when the maximum stress intensity (Kmax) exceeded a certain well‐defined critical value characteristic for a given material‐solution combination. When Kmax was lower than the critical value, the same cathodic polarization, with all other conditions (specimen, solution, pH, loading frequency, stress ratio, temperature, etc.) being equal, retarded or had no influence on crack growth. The results and fractographic observations suggested that the acceleration in crack growth under cathodic polarization was due to hydrogen‐induced cracking (HIC). Therefore, critical values of Kmax, as well as the stress intensity range (ΔK) were regarded as corresponding to the onset of corrosion FCG according to the HIC mechanism and designated as KHIC and ΔKHIC. HIC was the main mechanism of corrosion FCG at Kmax > KHICK > ΔKHIC). For most of the material‐solution combinations investigated, stress‐assisted dissolution played a dominant role in the corrosion fatigue crack propagation at Kmax < KHICK < ΔKHIC).  相似文献   

9.
Fatigue crack growth (FCG) behavior of SS 316(N) weld has been evaluated at different R‐ratios at room temperature and compared with that of the base metal. The FCG resistance of weld is better than that of the base material and is due to the residual stresses developed during the welding. The data were analyzed using the unified approach that considers the two‐parametric (ΔK and Kmax) nature of fatigue. The R‐ratio effects in both the base and weld metals are accounted for without invoking the extrinsic parameters, such as plasticity‐induced crack closure. Since the residual stresses are of the monotonic type, they affect the crack growth via the Kmax‐parameter. The crack growth trajectory plots were developed, and they show how the two crack tip driving forces, ΔK and Kmax, change to overcome the FCG resistance of the weld in relation to that of the base metal. The results also show that the effects from the compressive residual stresses are more dominant at low R‐values and occur via the Kmax parameter.  相似文献   

10.
It is well established that there are two fatigue crack tip driving forces – the cyclic, ΔK, and the static, Kmax. In this study, the effects of each crack tip driving force on crack growth were evaluated for various structural materials. A unified method of design that allows for predicting the response of long and physically small fatigue cracks at positive stress ratios is introduced. Good agreement between predicted and experimental long and physically small fatigue crack growth data was obtained. The importance of this method in material and component design is discussed as part of a contemporary design philosophy.  相似文献   

11.
High temperature fatigue crack growth has been examined in the light of the new concepts developed by the authors. We observe that the high temperature crack growth behavior can be explained using the two intrinsic parameters ΔK and Kmax, without invoking crack closure concepts. The two-parameter requirement implies that two driving forces are required simultaneously to cause fatigue cracks to grow. This results in two thresholds that must be exceeded to initiate the growth. Of the two, the cyclic threshold part is related to the cyclic plasticity, while the static threshold is related to the breaking of the crack tip bonds. It is experimentally observed that the latter is relatively more sensitive to temperature, crack tip environment and slip mode. With increasing test temperature, the cycle-dependent damage process becomes more time-dependent, with the effect that crack growth is dominated by Kmax. Thus, in all such fracture processes, whether it is an overload fracture or subcritical crack growth involving stress corrosion, sustained load, creep, fatigue or combinations thereof, Kmax (or an equivalent non-linear parameter such as Jmax) remains as one essential driving force contributing to the final material separation. Under fatigue conditions, cyclic amplitude ΔK (or an equivalent non-linear parameter like ΔJ) becomes the second necessary driving force needed to induce the characteristic cyclic damage for crack growth. Cyclic damage then reduces the role of Kmax required for crack growth at the expense of ΔK.  相似文献   

12.
We describe a model for predicting fatigue crack growth (FCG) with the presence in the loading spectrum of peak and block tensile overloads. The model is based on account for the following factors influencing crack growth retardation: change of the quantity Kop as a consequence of the induction of a system of residual compressive stresses at the crack tip and increase of the degree of crack closure that is due to plastic deformation of the material in the wake of the tip of the growing crack; plastic blunting of the crack tip. We propose a technique for quantitative prediction of the residual crack tip opening (radius of the blunted tip) after a peak tensile overload. Experimental verification of the proposed FCG model with differing applied load irregularity showed that the model may serve as the basis of a method for predicting the service life of cracked structural members operating in irregular loading regimes.Translated from Problemy Prochnosti, No. 8, pp. 3–16, August, 1994.  相似文献   

13.
In this study, the effects of compressive stresses on the crack tip parameters and its implication on fatigue crack growth have been studied. Elastic–plastic finite element analysis has been used to analyse the change of crack tip parameters with the increase of the applied compressive stress level.The near crack tip opening displacements and the reverse plastic zone size around the crack tip have been obtained. The finite element analysis shows that when unloading from peak tensile applied stress to zero applied stress, the crack tip is still kept open and the crack tip opening displacement gradually decreases further with the applied compressive stress. It has been found that for a tension–compression stress cycle these crack tip parameters are determined mainly by two loading parameters, the maximum stress intensity Kmax in the tension part of the stress cycle and the maximum compressive stress σmaxcom in the compression part of the stress cycle.Based on the two parameters, Kmax, and σmaxcom, a fatigue crack propagation model for negative R ratios only has been developed to include the compressive stress effect on the fatigue crack propagation rate.Experimental fatigue crack propagation data sets were used for the verification of this model, good agreements have been obtained.  相似文献   

14.
The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches; the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, K eff, was calculated using both models to correlate the measured crack growth rate in the composite. The calculated K eff from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.  相似文献   

15.
A study has been made of the effect of single compression cycles on near-threshold fatigue crack propagation in an I/M 7150 aluminum alloy. Based on experiments at a load ratio of R= 0.10 on cracks arrested at the fatigue threshold (δkth) in under-, peak and overaged microstructures, large compression overload cycles, of magnitude five times the peak tensile load, were found to cause immediate reinitiation of crack growth, even though the applied stress intensity range did not exceed ΔKth. Following an initial acceleration, subsequent crack advance was observed to take place at progressively decreasing growth rates until rearrest occurred. Such behavior is attributed to measured changes in crack closure which vary the effective near-tip driving force for crack extension (ΔKeff). Specifically, roughness-induced closure primarily is reduced by the application of compressive cycles via a mechanism involving crack surface abrasion which causes flattening and cracking of fracture surface asperities. Closure, however, is regenerated on subsequent propagation resulting in the rearrest. Such observations provide further confirmation that the existence of a fatigue threshold is controlled principally by the development of crack closure and are discussed in terms of the mechanisms of closure in precipitation hardened alloys.  相似文献   

16.
This paper presents a study on the effect of microstructure on the fatigue crack growth (FCG) rate in advanced S355 marine steels in the Paris Region of the da/dN versus ΔK log–log plot. The environments of study were air and seawater (SW), under constant amplitude sinewave fatigue loading. Fundamentally, three phenomena (crack tip diversion, crack front bifurcation and metal crumb formation) were observed to influence the rate of FCG. These phenomena appear to be a function of the material microstructure, environment and crack tip loading conditions. The three factors retarded the crack growth by reducing or redistributing the effective driving force at the main active crack tip. A crack path containing extensively the three phenomena was observed to offer strong resistance to FCG. In SW, the degree of the electrochemical dissolution of the microplastic zone appears to be an additional primary factor influencing FCG in the steels.  相似文献   

17.
Stress and strain field of a propagating fatigue crack and the resulting crack opening and closing behavior were analysed. It was found that a propagating fatigue crack was closed at tensile external loads due to the cyclically induced residual stresses. Strain range value Δ?y in the vicinity of the crack tip was found to be closely related with the effective stress intensity factor range ΔKeff which was determined on the basts of the analytical crack opening and closing behavior at its tip. Application of this analysis to the non-propagating fatigue crack problem and the fatigue crack propagation problems under variable stress amplitude conditions revealed that both Δ?y and ΔKeff were essential parameters governing fatigue crack growth rate.  相似文献   

18.
19.
Fatigue crack growth of AA2219 under different aging conditions   总被引:1,自引:0,他引:1  
The fatigue crack growth of commercial AA2219 has been examined under different aging treatments, namely, naturally aged (NA), under aged (UA), peak aged (PA) and over aged (OA) conditions. From the near threshold stress intensity range (ΔKNTH), the alloy in the NA condition is found to have the highest resistance to fatigue crack initiation. The crack growth rate increases and the near threshold stress intensity range decreases with advancing aging. This observation is found to be consistent with lower levels of crack closure and decreasing levels of tortuosity in crack path for PA and OA tempers. The inhomogeneous transcrystalline slip in the UA condition results in the slower crack growth at low stress intensity range (ΔK). The fracture morphology changes from crystallographic facets near the threshold region to clearly developed ductile striations in the Paris power-law regime to microvoid coalescence in the high ΔK regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号