首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
土壤蓄冷与土壤耦合热泵集成系统   总被引:6,自引:0,他引:6  
以平衡电网负荷、削峰填谷及利用可再生浅层地热能为基本出发点,提出了土壤蓄冷与土壤耦合热泵集成系统的新设想.该集成系统将蓄冷装置与地下埋管换热器合二为一,在夏季空调工况时,利用电力低谷时段的廉价电力,将冷量全部或部分储存到土壤中,以供白天用电高峰期空调使用;在需供冷的过渡季,系统按土壤耦合热泵系统的供冷工况运行,将系统的冷凝热排至土壤中,为冬季供暖储备热量;供暖季节,系统按土壤耦合热泵系统的供暖工况运行,土壤作为热泵系统的低位热源.介绍了该集成系统的形式、技术特点及核心研究内容,并在前期研究工作的基础上对影响集成系统运行特性、冷量损失的因素进行了较全面的总结.  相似文献   

2.
林媛 《住宅科技》2009,29(3):1-5
文章介绍了带有相变蓄热水箱的太阳能热泵系统的运行实验。该系统是在原有的太阳能一土壤源热泵的基础上通过增加一个蓄热装置建立起来,包含太阳能集热器、相变蓄热水箱、双热源(太阳能和土壤)热泵以及末端装置(风机盘管)四个主要部分实验在供暖期末期进行,在整个实验阶段,系统供暖满足率为0.6,平均供热COP达到6.5。  相似文献   

3.
在夏热冬冷地区,传统式单独运行的地埋管式地源热泵在夏季对土壤的蓄热量大于在冬季的取热量,常年运行会造成土壤热失衡及热泵机组运行效率降低的情况。冷却塔式复合地源热泵系统可利用冷却塔辅助散热,通过分析其组成结构、工作原理和分类特点,确认控制温差和调节冷却塔运行时间等方法可改善热泵运行的工作效率,保持地埋管附近土壤的热平衡,同时在降低热泵机组初投资、运行维护费用,以及减少占地面积等方面优势明显。  相似文献   

4.
设计并构建了一种新型空气源热泵辅助加热太阳能热水系统,该热水系统可根据气候条件分别以单一的太阳能热水器模式、单一的空气源热泵模式及太阳能与空气源热泵耦合模式运行.在昆明地区气候条件下,对空气源热泵辅助加热太阳能热水系统进行了一系列测试,分析了在不同运行工况下系统的热力性能.测试结果表明该系统具有较大的节能潜力,热泵空气...  相似文献   

5.
《Energy and Buildings》2006,38(12):1477-1484
This paper presents the experimental study of a ground-coupled heat pump used in a 180 m2 private residence and combined with thermal solar collectors. This process, called GEOSOL, meets domestic hot water and heating–cooling building energy needs. Solar heat is used as a priority for domestic hot water heating and when the preset water temperature is reached, excess solar energy is injected into the ground via boreholes. This system has the advantage to contribute to the balance of the ground loads, increasing the operating time of the solar collectors and preventing overheating problems. After 11 months in operation, the power extracted and injected into the ground had average values of 40.3 and 39.5 W/m, respectively. Energy injected into the ground represents 34% of the heat extracted, and the heat pump's coefficient of performance (COP) in heating mode had an average value of 3.75. In addition, the domestic hot water solar fraction had an average value higher than 60% for the first 11 months in operation.  相似文献   

6.
This paper introduces a solar-assisted ground-coupled heat pump (SAGCHP) system with heat storage for space heating and domestic hot water (DHW) supply. The simulation results of the system's detailed operating performance are presented. The optimization of the system design is carried out by the TRNSYS and a numerical simulation is performed for continuous operation of 20 years under the meteorological conditions of Beijing. Different control strategies are considered and the operational characteristics of each working mode are studied. The simulating results show that the long term yearly average space heating efficiency is improved by 26.3% compared to a traditional ground coupled heat pump (GCHP) system because the solar thermal collecting system is used to elevate the thermal energy in the soil and to provide direct space heating with heat storage. At the same time, the underground heat load imbalance problem for a heating load dominated GCHP is solved by soil recharging during non-heating periods, while extra solar energy is utilized to supply DHW. The flexibility and high efficiency of the SAGCHP system could offer an alternative for space heating and DHW supply by heat pump technology and solar energy in cold winters of northern China.  相似文献   

7.
混合土壤热泵包括埋地换热器和冷却塔两部分,埋地换热器用于供热,而冷却塔和埋地换热器共同制冷。从理论上来说,山于冷却塔承担了一部分冷负荷,从而减少了埋地换热器的数量,节省了初投资。本文首先介绍了混合土壤热泵的工作原理及其特点,然后比较了混合土壤热泵与水源热泵的初投资,并分析了其运行费用,得出当系统容量小丁616kW时,混合土壤热泵在经济上和技术上具有明显优势的结论。在此基础上,从地理环境、气候条件及技术优势和环保的角度讨论了混合土壤热泵在长江流域及其周围地区的发展优势,展望了混合土壤热泵在该地区的发展前景。  相似文献   

8.
土壤蓄冷与土壤耦合热泵集成系统的模拟研究   总被引:3,自引:3,他引:0  
结合土壤耦合热泵技术和土壤蓄冷技术的优点,提出了一种全新的热泵空调系统形式——土壤蓄冷与土壤耦合热泵集成系统,建立了夏季空调工况时土壤蓄冷、释冷过程的数学模型,采用固相增量法模型对系统的蓄冷、释冷运行特性进行了模拟计算,为土壤蓄冷与土壤耦合热泵集成系统的应用提供了理论支持。  相似文献   

9.
张姝  郑茂余  王潇  王亚轩 《暖通空调》2012,42(3):97-102
为了解决严寒地区长期使用地埋管地源热泵所引起的土壤温度逐年降低问题,提出利用现有设备实现跨季节空气-土壤蓄热思想,建立了室外空气换热器和竖直U形地埋管换热器的非稳态传热模型。分别对3种运行模式在4种埋深情况下的土壤蓄热特性进行了模拟分析。结果显示,蓄热能效比为8.1~17.0;经综合比较可知,采用50m埋深、第2种模式蓄热更加经济高效。通过实验验证了所建模型的正确性。  相似文献   

10.
The present study deals with the exergetic modeling and performance evaluation of solar assisted domestic hot water tank integrated ground-source heat pump (GSHP) systems for residences for the first time to the best of the author's knowledge. The model is applied to a system, which mainly consists of (i) a water-to-water heat pump unit (ii) a ground heat exchanger system having two U-boreholes with an individual depth of 90 m, (iii) a solar collector system composing of rooftop thermal solar collectors with a total surface area of 12 m2, (iv) a domestic hot water tank with a electrical supplementary heater, and (v) a floor heating system with a surface of 154 m2, and (vi) circulating pumps. Exergy relations for each component of the system and the whole system are derived for performance assessment purposes, while the experimental and assumed values are utilized in the analysis. Exergy efficiency values on a product/fuel basis are found to be 72.33% for the GSHP unit, 14.53% for the solar domestic hot water system and 44.06% for the whole system at dead (reference) state values for 19 °C and 101.325 kPa. Exergetic COP values are obtained to be 0.245 and 0.201 for the GSHP unit and the whole system, respectively. The greatest irreversibility (exergy destruction) on the GSHP unit basis occurs in the condenser, followed by the compressor, expansion valve and evaporator.  相似文献   

11.
Study on hybrid ground-coupled heat pump systems   总被引:1,自引:0,他引:1  
Although ground-coupled heat pump (GCHP) systems are becoming attractive air-conditioning systems in some regions, the significant drawback for their wider application is the high initial cost. Besides, more energy is rejected into ground by the GCHP system installed in cooling-dominated buildings than the energy extracted from ground on an annual basis and this imbalance can result in the degradation of system performance. One of the available options that can resolve these problems is to apply the hybrid ground-coupled heat pump (HGCHP) systems, with supplemental heat rejecters for rejecting extra thermal energy when they are installed in cooling-dominated buildings. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer of its main components. The computer program developed on this hourly simulation model can be used to calculate the operating data of the HGCHP system according to the building load. The design methods and running control strategies of the HGCHP system for a sample building are investigated. The simulation results show that proper HGCHP system can effectively reduce both the initial cost and the operating cost of an air-conditioning system compared with the traditional GCHP system used in cooling-dominated buildings.  相似文献   

12.
设计了一种蓄热型空气式太阳能集热-空气源热泵复合供暖系统.该系统具有太阳能供热、太阳能辅助热泵供热和热泵供热3种运行模式,可根据环境工况及供暖负荷的变化自动切换运行模式,保证室内供暖的稳定性.在通辽市的实验研究结果表明:在整个供暖季内,该系统可持续提供42.6 ℃的热水,维持室内温度在21.3?24.1 ℃之间;平均C...  相似文献   

13.
介绍了该工程地源热泵系统设计。从冷热周期内地源热泵系统热量平衡的角度,分析了地源热泵系统的运行策略。  相似文献   

14.
常用水源热泵空调系统分析   总被引:4,自引:2,他引:4  
对常用水源热泵空调系统的特点、设计要点及应注意的问题进行了综述分析,尤其是对土壤耦合式地源热泵空调系统,结合工程实例进行了着重探讨。结论表明:在条件允许的情况下,使用地源热泵、水源热泵和水环路热泵空调,无疑是一种利国利民的选择。  相似文献   

15.
我国既有建筑面积为560亿m~2,绝大部分为高能耗建筑,生活热水能耗占建筑能耗的20%~30%。建筑节能势在必行。通过对上海地区某高校学生宿舍空气源热泵辅助太阳能热水系统的实际运行工况下的热性能测试和分析计算,得到该系统年运行耗能为807 445.6 MJ,热泵的平均COP为3.2,系统太阳能保证率为47%,系统年运行费用仅为37 147.4元,具有极大的节能经济性,为生活热水能耗研究提供了一定的理论指导。  相似文献   

16.
通过滨州市公路局公路大厦地埋管地源热泵系统工程实例介绍了地埋管地源热泵系统在系统的选择、设计及土壤热交换器施工方面的考虑因素及经验方法.  相似文献   

17.
A solar-assisted HVAC system was retrofitted in 2006-2009 onto an earlier (1980) energy-efficient building. A hybrid system of flat plate and vacuum tube solar collectors heats water in a large hot storage tank that is delivered to an absorption chiller in the cooling season or directly to heating coils in the heating season. Large chilled water storage tanks are charged off-peak and discharged during the day, cooling the building in parallel with the chiller. Measurements of the seasonal performance of the system are presented. Good overall agreement between actual measurements and earlier numerical modeling results is reported for our system, with one notable discrepancy attributable to the operation of the air terminal units, which requires tuning. In cold seasons, solar thermal energy can easily displace a large fraction of traditional heating sources. In the cooling season, the conversion of heat to cooling capacity incurs several parasitic losses, which if not accounted for properly in the design stage, have the capacity to completely offset any advantage gained from the solar system. The economics of building-scale solar thermal systems are strongly dependent on the cost of energy, and electricity in particular. The economics are favorable where electricity costs are high, and vice-versa.  相似文献   

18.
土壤耦合式热泵系统设计及经济性分析   总被引:6,自引:4,他引:2  
介绍了土壤耦合式地源热泵系统的工作原理,着重对地热换热器和压缩机的设计进行研究,提出利用太阳能集热器、冷却塔与热泵机组组合运行,以提高运行效率。对地源热泵系统的经济性进行了分析。  相似文献   

19.
This paper is performed to analyze the performance of underground thermal storage in a solar-ground coupled heat pump system (SGCHPS) for residential building. Based on the experimental results, the system performance during a longer period is simulated by the unit modeling, and its parametric effects are discussed. The results show that the performance of underground thermal storage of SGCHPS depends strongly on the intensity of solar radiation and the matching between the water tank volume and the area of solar collectors. Compared with the solar radiation, the variations of the water tank temperature and the ground temperature rise lag behind and keep several peaks during the day time. For the case of Tianjin, the efficiency of underground thermal storage based on the total solar radiation and absorbed solar energy by the collectors can reach over 40% and 70%, respectively. It is suggested that the reasonable ratio between the tank volume and the area of solar collectors should be in the range of 20–40 L/m2.  相似文献   

20.
A hybrid ground-coupled heat pump (HGCHP) with domestic hot water (DHW) supply system has been proposed in this paper for space cooling/heating and DHW supply for residential buildings in hot-climate areas. A simulation model for this hybrid system is established within the HVACSIM+ environment. A sample system, applied for a small residential apartment located in Hong Kong, is hourly simulated in a typical meteorological year. The conventional GCHP system and an electric heater for DHW supply are also modeled and simulated on an hourly basis within the HVACSIM+ for comparison purpose. The results obtained from this case study show that the HGCHP system can effectively alleviate the imbalanced loads of the ground heat exchanger (GHE) and can offer almost 95% DHW demand. The energy saving for DHW heating is about 70% compared with an electric heater. This proposed scheme, i.e. the HGCHP with DHW supply, is suitable to residential buildings in hot-climate areas, such as in Hong Kong.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号