首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asian dust storms (ADS) originating from the arid deserts of Mongolia and China are a well-known springtime meteorological phenomenon throughout East Asia. The ventilation systems in office utilize air from outside and therefore it is necessary to understand how these dust storms affect the concentrations of PM2.5 and PM10 in both the indoor and outdoor air. We measured dust storm pollution particles in an office building using a direct-reading instrument (PC-2 Quartz Crystal Microbalance, QCM) that measured particle size and concentration every 10 min for 1 h, three times a day. A three-fold increase in the concentrations of PM2.5 and PM10 in the indoor and outdoor air was recorded during the dust storms. After adjusting for other covariates, autoregression models indicated that PM2.5 and PM10 in the indoor air increased significantly (21.7 μg/m3 and 23.0 μg/m3 respectively) during dust storms. The ventilation systems in high-rise buildings utilize air from outside and therefore the indoor concentrations of fine and coarse particles in the air inside the buildings are significantly affected by outside air pollutants, especially during dust storms.  相似文献   

2.
The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single‐family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2, were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings.  相似文献   

3.
Ventilation in Scandinavian buildings is commonly performed by means of a constant flow ventilation fan. By using a regulated fan, it is possible to make a seasonal adjustment of outdoor ventilation flow. Energy saving can be achieved by reducing the mechanical ventilation flow during the heating season, when natural ventilation driven by temperature differences between outdoor and indoor is relatively high. This ventilation principle has been called 'seasonally adapted ventilation (SAV)'. The aim was to study if a 25-30% reduction of outdoor ventilation flow during heating season influenced sick building syndrome (SBS) and the perception of the indoor environment. This was done in a 1-year cross-over intervention study in 44 subjects in a multi-family building. During the first heating season (November to April), one part of the building (A) got a reduced flow during the heating season [0.4-0.5 air exchanges per hour (ACH)] while the other part (B) had constant flow (0.5-0.8 ACH). The next heating season, part A got constant flow, while part B got reduced ventilation flow. Reduced ventilation increased the relative air humidity by 1-3% in the living room (mean 30-37% RH), 1-5% in the bathroom (mean 48-58% RH) during heating season. The room temperature increased 0.1-0.3 degrees C (mean 20.7-21.6 degrees C), mean carbon dioxide (CO2) concentration in the bedroom increased from 920 to 980 p.p.m. at reduced flow. The indoor air quality was perceived as poorer at reduced outdoor airflow, both in the bedroom and in the apartment as a whole. There was a significant increase of stuffy odor (P = 0.05) at reduced outdoor airflow and the indoor air quality was perceived as poorer, both in the bedroom (P = 0.03) and in the apartment as a whole (P = 0.04). No significant influence on SBS symptoms or specific perceptions such as odors, draught, temperature, air dryness or stuffy air could be detected. In conclusion, reducing the ventilation flow in dwellings to a level below the current Swedish ventilation standard (0.5 ACH) may cause a perception of impaired air quality. Technical measurements could only demonstrate a minor increase of indoor temperature, relative air humidity, and bedroom CO2 concentration. This illustrates that it is important to combine technical measurements with a longitudinal evaluation of occupant reactions, when evaluating energy-saving measures. PRACTICAL IMPLICATIONS: It is important to combine technical measurements with a longitudinal evaluation of occupant reactions, when evaluating energy-saving measures. Reduction of outdoor airflow in dwellings below the current ventilation standard of 0.5 ACH may lead to a perception of impaired air quality, despite only a minor increase of bedroom CO2-concentration.  相似文献   

4.
Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. PRACTICAL IMPLICATIONS: This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.  相似文献   

5.
A dynamic botanical air filtration system (DBAF) was developed for evaluating the short and long-term performance of botanical air cleaning technology under realistic indoor conditions. It was a fan-assisted with controlled airflow, activated-carbon/hydroculture based potted plant unit. The DBAF was first tested using a full-scale stainless chamber to evaluate its short-term performance. It was then integrated in the HVAC system of a new office space (96.8 m2) to study the effects of moisture content in the root bed on the removal efficiency, and the long-term performance. The results indicated that 5% outdoor air plus botanical filtration lead to the similar indoor formaldehyde/toluene concentration level as 25% outdoor air without filtration, which means that the filtration system was equivalent to 20% outdoor air (476 m3/h). The DBAF was effective for removing both formaldehyde and toluene under 5–32% volumetric water content of the root bed. It also performed consistently well over the relatively long testing period of 300 days while running continuously. The reduction in outdoor ventilation rate while using the botanical filtration system to maintain acceptable air quality would lead to 10–15% energy saving for the cold climate (Syracuse, NY), based on simulation analysis using EnergyPlus. For winter condition, the filter was also found to increase the supply air RH by 20%, which would decrease the dryness of air. For summer condition, the increase of RH in summer would be within 15% of the RH condition when no botanical air filtration is present.  相似文献   

6.
Zhang Q  Zhu Y 《Indoor air》2012,22(1):33-42
This study examined five schools with different ventilation systems in both urban and rural areas in South Texas. Total particle number concentration, ultrafine particle (UFP, diameter < 100 nm) size distribution, PM(2.5) , and CO(2) were measured simultaneously inside and outside of various school microenvironments. Human activities, ventilation settings, and occupancy were recorded. The study found a greater variation of indoor particle number concentration (0.6 × 10(3) -29.3 × 10(3) #/cm(3) ) than of outdoor (1.6 × 10(3) -16.0 × 10(3) #/cm(3) ). The most important factors affecting indoor UFP levels were related to various indoor sources. Gas fan heaters increased the indoor-to-outdoor ratio (I/O ratio) of total particle number concentrations to 30.0. Food-related activities, cleaning, and painting also contributed to the increased indoor particle number concentration with I/O ratios larger than 1.0. Without indoor sources, the I/O ratios for total particles varied from 0.12 to 0.66 for the five ventilation systems studied. The I/O ratio decreased when the outdoor total particle number concentration increased. Particles with diameters <60 nm were less likely to penetrate and stay airborne in indoor environments than larger particles and were measured with smaller I/O ratios. PRACTICAL IMPLICATIONS: From an exposure assessment perspective, schools are important and little-studied microenvironments where students congregate and spend a large proportion of their active time. This study provides information for indoor and outdoor ultrafine particle concentrations at different types of school microenvironments. These data may allow future epidemiological studies to better estimate exposure and assess ultrafine particles health effects among students.  相似文献   

7.
In modern societies, people spend about 90 percent of their time inside buildings. The challenge of building physics is to ensure that buildings are planned, constructed and built to provide a comfortable and healthy working and living environment. As construction style has changed during recent years, the planning phase has to be much more precise and the need of simulation programs that respond to every little change arises. An increasing problem in Austria is the indoor humidity. In the field of renovated buildings with airtight new building envelopes, mould growth due to high indoor relative humidity (RH) is a persistent problem. On the other hand, in recently realized Austrian passive houses with an air treatment system, the low humidity level of the indoor air is a problem with which scientists have been struggling for some time. It has been observed in numerous measurements and it is also easily computationally detectable that in winter period the indoor relative humidity level often drops below 30% RH. Low and high relative humidity levels have negative effects on the comfort feeling and health of the occupants of the dwelling and should therefore be avoided. However, it is expensive to increase or decrease the humidity in houses mechanically. Therefore, the existing room moisture should be used sensibly in buildings with a ventilation system. In buildings with a high indoor humidity it is necessary to adjust the ventilation depended on moisture production. This paper focuses on low indoor humidity and presents some different methods by which the indoor relative humidity can be regulated. The effects of adapting parameters such as ventilation rate and buffering material in the dwelling were clearly reflected in the measured temperature and relative humidity. “BuildOpt_VIE” software developed at the Vienna University of Technology was used for the dynamic building simulation in this study.  相似文献   

8.
根据成都市夏季室外颗粒物浓度的实测结果,利用数值流体力学方法对混合通风空调房间的粒子进行了模拟,分析了室内粒子的空间演化及其与室外粒子的浓度关系。结果表明,室内粒子浓度对室外粒子浓度具有直接的依赖性,其中进风携带的小粒子浓度在室内下降较为明显。因此,在研究室内空气品质的同时,应考虑室外背景粒子浓度变化的影响。  相似文献   

9.
We studied the effect of ventilation and air filtration systems on indoor air quality in a children's day-care center in Finland. Ambient air nitrogen oxides (NO, NO2) and particles (TSP, PM10) were simultaneously measured outdoors and indoors with automatic nitrogen oxide analyzers and dust monitoring. Without filtration nitrogen oxides and particulate matter generated by nearby motor traffic penetrated readily indoors. With chemical filtration 50-70% of nitrogen oxides could be removed. Mechanical ventilation and filtration also reduced indoor particle levels. During holidays and weekends when there was no opening of doors and windows and no particle-generating activity indoors, the indoor particle level was reduced to less than 10% of the outdoor level. At times when outdoor particle concentrations were high during weekdays, the indoor level was about 25% of the outdoor level. Thus, the possible adverse health effects of nitrogen oxides and particles indoors could be countered by efficient filtration. We also showed that inclusion of heat recovery equipment can make new ventilation installations economical.  相似文献   

10.
Air flow and the associated indoor carbon dioxide concentrations have been extensively monitored in 62 classrooms of 27 naturally ventilated schools in Athens, Greece. The specific ventilation patterns as well as the associated carbon dioxide concentrations, before, during and after the teaching period are analysed in detail. During the teaching period, only 23% of the measured classrooms presented a flow rate higher than the recommended value of 8 l/p/s while the mean daily fluctuation was close to 40%. About, 52% of the classrooms presented a mean indoor CO2 concentration higher than 1000 ppm. The specific experimental data have been compared against existing ventilation rates and carbon dioxide concentrations using published information from 287 classrooms of 182 naturally ventilated schools and 900 classrooms from 220 mechanically ventilated schools. The relation between the air flow rates and the corresponding indoor carbon dioxide is analysed and then compared to the existing data from naturally and mechanically ventilated schools. It is found that all three data sets present a CO2 concentration equal to 1000 ppm for air flows around 8 l/p/s. Specific adaptive actions to improve the indoor environmental quality have been recorded and the impact of indoor and ambient temperatures as well as of the carbon dioxide concentration on window opening is analysed in detail. A clear relation is found, between the indoor temperature at which the adapting action takes place and the resulting air flow rate. In parallel, a statistically significant relation between window opening and the indoor–outdoor temperature difference has been established.  相似文献   

11.
A mechanistic model that considers particle dynamics and their effects on surface emissions and sorptions was developed to predict the fate and transport of phthalates in indoor environments. A controlled case study was conducted in a test house to evaluate the model. The model‐predicted evolving concentrations of benzyl butyl phthalate in indoor air and settled dust and on interior surfaces are in good agreement with measurements. Sensitivity analysis was performed to quantify the effects of parameter uncertainties on model predictions. The model was then applied to a typical residential environment to investigate the fate of di‐2‐ethylhexyl phthalate (DEHP) and the factors that affect its transport. The predicted steady‐state DEHP concentrations were 0.14 μg/m3 in indoor air and ranged from 80 to 46 000 μg/g in settled dust on various surfaces, which are generally consistent with the measurements of previous studies in homes in different countries. An increase in the mass concentration of indoor particles may significantly enhance DEHP emission and its concentrations in air and on surfaces, whereas increasing ventilation has only a limited effect in reducing DEHP in indoor air. The influence of cleaning activities on reducing DEHP concentration in indoor air and on interior surfaces was quantified, and the results showed that DEHP exposure can be reduced by frequent and effective cleaning activities and the removal of existing sources, though it may take a relatively long period of time for the levels to drop significantly. Finally, the model was adjusted to identify the relative contributions of gaseous sorption and particulate‐bound deposition to the overall uptake of semi‐volatile organic compounds (SVOCs) by indoor surfaces as functions of time and the octanol‐air partition coefficient (Koa) of the chemical. Overall, the model clarifies the mechanisms that govern the emission of phthalates and the subsequent interactions among air, suspended particles, settled dust, and interior surfaces. This model can be easily extended to incorporate additional indoor source materials/products, sorption surfaces, particle sources, and room spaces. It can also be modified to predict the fate and transport of other SVOCs, such as phthalate‐alternative plasticizers, flame retardants, and biocides, and serves to improve our understanding of human exposure to SVOCs in indoor environments.  相似文献   

12.
The effects of air filtration and ventilation on indoor particles were investigated using a single-zone mathematical model. Particle concentration indoors was predicted for several I/O conditions representing scenarios likely to occur in naturally and mechanically ventilated buildings. The effects were studied for static and dynamic conditions in a hypothetical office building. The input parameters were based on real-world data. For conditions with high particle concentrations outdoors, it is recommended to reduce the amount of outdoor air delivered indoors and the necessary reduction level can be quantified by the model simulation. Consideration should also be given to the thermal comfort and minimum outdoor air required for occupants. For conditions dominated by an indoor source, it is recommended to increase the amount of outdoor air delivered indoors and to reduce the amount of return air. Air filtration and ventilation reduce particle concentrations indoors, with the overall effect depending on efficiency, location and the number of filters applied. The assessment of indoor air quality for specific conditions could be easily calculated by the model using user-defined input parameters.  相似文献   

13.
为研究污染源对非污染源区域的影响,具体考虑室内污染源、室外污染物浓度以及室内与室外通风方式的作用,对双区域内一般离散气态污染物在室内的浓度水平进行模拟和分析。通过对污染源的研究表明:室内污染源浓度的成倍增加会导致两个区域平均浓度均成倍增加,并且区域平均浓度是区域本身浓度与室外浓度的叠加值。通过对通风方式的研究表明:在污染源区域设置排气扇是有效的排污方法,有利于改善室内人居环境。  相似文献   

14.
The use of hygroscopic materials for moisture buffering is a passive way to moderate the variation of indoor humidity. Through absorption and desorption, surface materials in the indoor environment, such as curtains, carpets and wall paper, are able to dampen the moisture variations. The moisture buffering capacity of these materials may be used to improve the relative humidity of the indoor environment at reduced energy costs.The objectives of this paper are threefold. The first objective is to derive a theoretical model for the transient moisture transfer between a curtain system and the indoor air for the case where the curtain is placed in front of a wall. The second objective is to conduct experiments inside environmental chambers to validate the theoretical model and to test the ability of curtains to moderate indoor humidity. It is shown that the experimental results for the curtain moisture uptake and the relative humidity inside the chamber compared well with the model simulation results. The third and final objective is to test and evaluate the model under “real environment conditions” for a case study of a hygroscopic cotton curtain, placed in a “typical” office space in the city of Beirut with an area of 25 m2 that uses direct expansion (DX) air conditioning system. It is found that hygroscopic curtains maintain humidity of less than 65% during part load operation compared to the upper limit of 70% relative humidity when no curtain is used. On the other hand, it is found that the energy use, as determined by the daily electrical power consumption of the DX system, is almost the same for the two cases, (with and without a curtain), where approximately 20 kWh of energy input is required 13 kWh of sensible energy and 7 kWh of latent energy.  相似文献   

15.
M. Zaatari  J. Siegel 《Indoor air》2014,24(4):350-361
Particles in retail environments can have consequences for the occupational exposures of retail workers and customers, as well as the energy costs associated with ventilation and filtration. Little is known about particle characteristics in retail environments. We measured indoor and outdoor mass concentrations of PM10 and PM2.5, number concentrations of submicron particles (0.02–1 μm), size‐resolved 0.3–10 μm particles, as well as ventilation rates in 14 retail stores during 24 site visits in Pennsylvania and Texas. Overall, the results were generally suggestive of relatively clean environments when compared to investigations of other building types and ambient/occupational regulatory limits. PM10 and PM2.5 concentrations (mean ± s.d.) were 20 ± 14 and 11 ± 10 μg/m3, respectively, with indoor‐to‐outdoor ratios of 1.0 ± 0.7 and 0.88 ± 1.0. Mean submicron particle concentrations were 7220 ± 7500 particles/cm3 with an indoor‐to‐outdoor ratio of 1.18 ± 1.30. The median contribution to PM10 and PM2.5 concentrations from indoor sources (vs. outdoors) was 83% and 53%, respectively. There were no significant correlations between measured ventilation rates and particle concentrations of any size. When examining options to lower PM2.5 concentrations below regulatory limits, the required changes to ventilation and filtration efficiency were site specific and depended on the indoor and outdoor concentration, emission rate, and infiltration level.  相似文献   

16.
The aim of this study was to characterize the relationship between Indoor Air Quality (IAQ) and ventilation in French classrooms. Various parameters were measured over one school week, including volatile organic compounds, aldehydes, particulate matter (PM2.5 mass concentration and number concentration), carbon dioxide (CO2), air temperature, and relative humidity in 51 classrooms at 17 schools. The ventilation was characterized by several indicators, such as the air exchange rate, ventilation rate (VR), and air stuffiness index (ICONE), that are linked to indoor CO2 concentration. The influences of the season (heating or non‐heating), type of school (nursery or elementary), and ventilation on the IAQ were studied. Based on the minimum value of 4.2 l/s per person required by the French legislation for mechanically ventilated classrooms, 91% of the classrooms had insufficient ventilation. The VR was significantly higher in mechanically ventilated classrooms compared with naturally ventilated rooms. The correlations between IAQ and ventilation vary according to the location of the primary source of each pollutant (outdoor vs. indoor), and for an indoor source, whether it is associated with occupant activity or continuous emission.  相似文献   

17.
The particle concentrations outside and inside two historical churches were monitored for at least ten months. The highest levels of outdoor concentrations were recorded in winter. This was caused by high levels of particle emissions from the burning of predominantly solid fuel for domestic heating in premises around the two churches monitored. These high levels of particle concentrations declined over the warmer periods of the year with the lowest concentrations occurring in the summer months. Owing to the marked winter–summer pattern for outdoor concentrations, the particles of outdoor origin accounted for 80%–90% of the overall indoor particle concentrations in the period of predominantly cold weather conditions (December to March) and for 50%–60% in the warm period (June to September). Reducing air exchange between the external space and the church interiors by keeping windows and doors closed had a limited effect on the reduction of average particle concentrations indoors (by less than 10%). A controlled air exchange system, which would increase the ventilation of a church when the particle concentration outdoors is lower than indoors and reduce ventilation when the outdoor air is polluted, would produce a further reduction of 10% in the indoor average particle concentration. The general conclusion is that the protection of the interiors of historical churches against soiling is primarily achieved by the improved particle filtering capacity of building envelopes and the gradual reduction of the overall outdoor particle concentration. Use of air cleaning systems with particle filtration may be a viable long-term option.  相似文献   

18.
An open-air scaled urban surface (OASUS) was used to physically model the influence of urban structure on microclimatic conditions that affect the cooling requirements of buildings. The OASUS scale-model consists of an extensive urban-like building/street array constructed at an open site in the arid Negev region of southern Israel. Building rows are comprised of hollow concrete masonry blocks and have thermal and optical properties analogous to common local construction materials. Previous experiments with the scale-model were limited to “dry” conditions, with only negligible exchanges of latent heat. Considering that one of the main advantages of using the scale-model facility is to be able to control factors affecting microclimate, this study analyses the impact of adding moisture to the scaled “streets” between “building” rows, and gauges the impact of outdoor evaporative cooling on the energy demand of adjacent buildings. Measurements carried out during the summer month of August 2006 at the scale-model facility were used to obtain street canyon air temperatures, which in turn provided input for a dynamic energy simulation of indoor cooling loads in an actual building. The simulation model was calibrated with simultaneously measured data from a nearby residential building. Results suggest that the cooling factor in a street canyon is a direct function of the relative availability of moisture, with respect not only to horizontal area but also to the “complete” three-dimensional urban surface. In addition, simulation results of building energy demand show the importance of accounting for urban density when planning the disposition of vegetated surfaces for cooling purposes.  相似文献   

19.
The daily concentration and chemical composition of PM2.5 was determined in indoor and outdoor 24‐h samples simultaneously collected for a total of 5 weeks during a winter and a summer period in an apartment sited in Rome, Italy. The use of a specifically developed very quiet sampler (<35 dB) allowed the execution of the study while the family living in the apartment led its normal life. The indoor concentration of PM2.5 showed a small seasonal variation, while outdoor values were much higher during the winter study. Outdoor sources were found to contribute significantly to indoor PM concentration especially during the summer, when the apartment was naturally ventilated by opening the windows. During the winter the infiltration of outdoor PM components was lower and mostly regulated by the particle dimensions. Organics displayed In/Out ratios higher than unity during both periods; their indoor production increased significantly during the weekends, where the family stayed mostly at home. PM components were grouped into macrosources (soil, sea, secondary inorganics, traffic, organics). During the summer the main contributions to outdoor PM2.5 came from soil (30%), secondary inorganics (29%) and organics (22%). Organics dominated both indoor PM2.5 during the summer (60%) and outdoor and indoor PM2.5 during the winter (51% and 66%, respectively).  相似文献   

20.
Indoor moisture management, which means keeping the indoor relative humidity (RH) at correct levels, is very important for whole building performance in terms of indoor air quality (IAQ), energy performance and durability of the building. In this study, the effect of combining a relative-humidity-sensitive (RHS) ventilation system with indoor moisture buffering materials was investigated. Four comprehensive heat–air–moisture (HAM) simulation tools were used to analyse the performance of different moisture management strategies in terms of IAQ and of energy efficiency. Despite some differences in results, a good agreement was found and similar trends were detected from the results, using the four different simulation tools. The results from simulations demonstrate that RHS ventilation reduces the spread between the minimum and maximum values of the RH in the indoor air and generates energy savings. Energy savings are achieved while keeping the RH at target level, not allowing for possible risk of condensations. The disadvantage of this type of demand controlled-ventilation is that other pollutants (such as CO2) may exceed target values. This study also confirmed that the use of moisture-buffering materials is a very efficient way to reduce the amplitude of daily moisture variations. It was possible, by the combined effect of ventilation and wood as buffering material, to keep the indoor RH at a very stable level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号