首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
《Energy and Buildings》2005,37(10):1035-1048
This paper presents the results of a site survey study on the faults in variable air volume (VAV) terminals and an automatic fault detection and diagnosis (FDD) strategy for VAV air-conditioning systems using a hybrid approach. The site survey study was conducted in a commercial building. 20.9% VAV terminals were ineffective and 10 main faults were identified in the VAV air-conditioning systems. The FDD strategy adopts a hybrid approach utilizing expert rules, performance indexes and statistical process control models to address these faults. Supported by a pattern recognition method, expert rules and performance indexes based on system physical characteristics are adopted to detect 9 of the 10 faults. Two pattern recognition indexes are introduced for fault isolation to overcome the difficulty in differentiating damper sticking and hysteresis from improper controller tuning. A principal component analysis (PCA)-based method is developed to detect VAV terminal flow sensor biases and to reconstruct the faulty sensors. The FDD strategy is tested and validated on typical VAV air-conditioning systems involving multiple faults both in simulation and in situ tests.  相似文献   

2.
There are many reports about faulty status in building air-conditioning systems recently. It becomes difficult to keep indoor air temperature appropriately as faults occur, and the faults cause waste of building energy consumption. The model-based fault detection and diagnosis (FDD) methods have been researched for specific parts of air-conditioning system such as chillers, coils, variable air volume units (VAV units), etc. It needs, however, much time and labor to monitor and check every single part because we cannot predict where and when the faults occur. The purpose of this study is to examine indoor air temperature changes and energy consumption increase when faults occur and to develop an easy-to-use FDD tool that helps to find out the faulty place through the whole building air-conditioning system. And then, we treat the reliability of the proposed FDD tool and effectiveness to control of indoor environment deterioration and energy consumption increase by the tool is evaluated based on building air-conditioning system simulation in this paper.  相似文献   

3.
《Energy and Buildings》2004,36(3):205-218
In a variable air volume (VAV) system with 100% outdoor air, the cooling need in the building is satisfied with a certain air flow at a certain supply air temperature. To minimize the system energy use, an optimal supply air temperature can be set dependent on the load, specific fan power (SFP), chiller coefficient of performance, outdoor temperature and the outdoor relative humidity. The theory for an optimal supply air temperature is presented and the heating, ventilation and air-conditioning (HVAC) energy use is calculated depending on supply air temperature control strategy, average U-value of the building envelope and two outdoor climates. The analyses show that controlling the supply air temperature optimally results in a significantly lower HVAC energy use than with a constant supply air temperature. The optimal average U-value of the building envelope is in practise mostly zero.  相似文献   

4.
The purpose of heating, ventilating and air conditioning (HVAC) system is to provide and maintain a comfortable indoor temperature and humidity. The objective of this work is to model building structure, including equipments of HVAC system. The hybrid HVAC model is built with physical and empirical functions of thermal inertia quantity. Physical laws are used to build the sub-model for subsystems that have low thermal inertia while the empirical method is used to build the sub-model for subsystems with high thermal inertia. The residential load factor (RLF) is modeled by residential heat balance (RHB). RLF is required to calculate a cooling/heating load depending upon the indoor/outdoor temperature. The transparency, functionality of indoor/outdoor temperatures and simplicity of RLF makes it suitable for modeling. Furthermore, the parameters of the model can be calculated differently from room to room and are appropriate for variable air volume (VAV) factor. Nowadays, a VAV system is universally accepted as means of achieving both energy efficiency and comfortable building environment. In this research work, a pre-cooling coil is added to humidify the incoming air, which controls the humidity more efficiently inside conditioned space. The model presented here is verified with both theoretical and numerical methods.  相似文献   

5.
《Energy and Buildings》2001,33(4):391-401
Assimilation of cost-effective fault detection and diagnosis (FDD) technique in building management system can save enormous amount of energy and material. In this paper, recursive autoregressive exogenous algorithm is used to develop dynamic FDD model for variable air volume (VAV) air handling units. A methodology, based upon frequency response of the model is evolved for automatic fault detection and diagnosis. Results are validated with data obtained from a real building after introducing artificial faults. Robustness of the method is further established against sensor errors arising out of faulty bias during long term use or lack of proper commissioning. It is concluded that the method is quite robust and can detect and diagnose several types of faults. A short and simple method is also included in this paper to detect the faults of VAV units operating in the same zone by comparing their behavior. The new method, which requires very small amount of computation time, was tested with the aforementioned database and shows satisfactory results.  相似文献   

6.
This paper presents a diagnostic Bayesian network (DBN) for fault detection and diagnosis (FDD) of variable air volume (VAV) terminals. The structure of the DBN illustrates qualitatively the casual relationships between faults and symptoms. The parameters of the DBN describe quantitatively the probabilistic dependences between faults and evidence. The inputs of the DBN are the evidences which can be obtained from measurements in building management systems (BMSs) and manual tests. The outputs are the probabilities of faults concerned. Two rules are adopted to isolate the fault on the basis of the fault probabilities to improve the robustness of the method. Compared with conventional rule-based FDD methods, the proposed method can work well with uncertain and incomplete information, because the faults are reported with probabilities rather than in the Boolean format. Evaluations are made on a dynamic simulator of a VAV air-conditioning system serving an office space using TRNSYS. The results show that it can correctly diagnose ten typical VAV terminal faults.  相似文献   

7.
Ventilation is important because it affects indoor environmental conditions, including air pollutant concentrations that may modify the health of the occupants of a building, or their perceptions and comfort. This paper reports, first of all, on field studies monitoring indoor overnight CO2 levels and outdoor ventilation rates in bedrooms employing room air conditioners (RACs), so the current situation of ventilation in actual high-rise residential buildings in Hong Kong can be appreciated. This is followed by a report of the results of laboratory experiments where two typical RACs were used in an examination of outdoor air ventilation characteristics in rooms employing RACs. The results of field studies showed that the outdoor ventilation rates in the measured bedrooms equipped with RACs in high-rise residential buildings in Hong Kong could not meet the ventilation requirement specified in the ASHRAE standard 62-2001 even if there was only one occupant in a bedroom. Although the use of a window-type air conditioner (WRAC) may provide a higher outdoor ventilation rate than the use of a split-type air conditioner (SARC), this may be ascribed to the fact there is more natural infiltration when a WRAC is used. The ventilation damper currently available in a WRAC does not significantly affect the outdoor ventilation rate. Therefore, such a damper cannot be expected to provide the ventilation rate as required by a ventilation code and its intended function of controlling ventilation is limited. In addition, the air exhausted from indoors to outdoors through the ventilation outlet in a WRAC is air that has just been cooled by the cooling coil (evaporator). This is unreasonable, because exhausting just-cooled and dehumidified air is a waste of energy. Therefore, an improved design for a WRAC has been suggested. Finally, the outdoor ventilation requirement for bedrooms at nighttime, when occupants are asleep, is discussed. A new ventilation rate of 3.0 l/s per person for the sleeping environment in high-rise residential buildings is proposed.  相似文献   

8.
对于冬季仍然要送入冷风来消除室内余热的场所,变频变风量运行不但可以节约风机的运行费用,还可以节省空调系统用于制冷的能量。本文基于Matlab/Simulink仿真平台,模拟了地铁车站冬季最冷天的空调运行能耗。结果证明,变频变风量系统冬季直接用室外冷源制冷节能效果明显。  相似文献   

9.
介绍了某大型钢铁企业检化验中心各实验室室内环境需求,及所设置的排风净化系统,新风空调系统,风机盘管空调系统等。阐述了所采取的变风量控制、排风最大同时使用系数、吊顶补风等相关节能措施。  相似文献   

10.
Causes and effects of a few real faults in a hydronic heating system are explained in this paper. Since building energy management system (BEMS) has to be utilized in fault detection and diagnosis (FDD), practical explanations of faults and their related effects are important to building caretakers. A simple heat balance model is used in this study. The model is calibrated using the optimization tool. Site data from the BEMS of a real building are calibrated against the model. Desired and real data are compared, so that the effects of the following faults are analyzed: faults in an outdoor air temperature sensor, fault in the time schedule, and a water flow imbalance problem. This paper presents an overview of the real causes of the faults and their effects both on the energy consumption and on the indoor air temperature. In addition, simple instructions for the building caretakers for fault detection in the hydronic heating systems are given.  相似文献   

11.
Correctly controlled solar desiccant evaporative cooling is an interesting option for achieving savings in building air-conditioning consumption. The operation of this system (open loop cooling cycle) is strongly influenced by indoor and outdoor air conditions. This influence is characterized using numerical simulations. First the air conditioned room and the cooling system are simulated using a validated model of the desiccant wheel. Then the influence of each parameter of the desiccant air handling unit is evaluated. The third step is to assess the system cooling power for each operating mode with fluctuating outdoor and indoor air conditions. This allows for making relevant choices for a new control strategy taking into account both indoor and outdoor air conditions. This control strategy is tested for a whole cooling season and compared to a reference compression system with promising results, allowing for energy savings of about 40% for French climate.  相似文献   

12.
System dynamic simulation has been adopted to test and evaluate the local and supervisory control of air-conditioning systems for over twenty years, while the modeling of the space ventilation was usually simulated using perfect mixing models. However, the complete-mixing air model fails to consider the impact of non-uniform air temperature stratifications. This paper presents a CFD-based virtual test method for control and optimization of indoor environment by combining a ventilated room with a ventilation control system. The ventilated room and its dynamic ventilation control system are represented by a computational fluid dynamics (CFD) model and models of the temperature sensor, PID controller and actuator and VAV damper model respectively. The ventilation and its control system are programmed using the user defined function program and interfaced with the CFD model. A space temperature offset model is developed to improve the accuracy of temperature measurement and control at the occupied zone as a virtual sensor. Case studies show that the ventilation control models can interoperate with the CFD simulation of the space online which presents a new application approach of CFD simulation for testing and developing control and optimal control strategy before a system is constructed practically. The use of the virtual sensor can effectively compensate the effect of non-uniform stratification on the temperature control and improve system control reliability in a mechanical ventilated room.  相似文献   

13.
对地铁站变风量空调风系统提出三种控制方法,即送回风温度控制法、优先控制水阀法和优先控制风机法。以武汉地铁2号线螃蟹甲站的空调系统作为模拟研究对象,建立了房间、风机、水阀、盘管和控制器等数学模型,以TRNSYS为仿真平台,搭建了地铁站变风量系统的模型,比较三种控制方法与定风量控制下系统在制冷季节的运行情况。模拟结果表明,送回风温度控制法能较好地控制室内温度,且在适当的出风温度设定值下,功耗能达到最小。在不考虑送风结露和考虑送风结露的情况下,节能率分别达到67.0%和55.9%。  相似文献   

14.
The paper proposes a new operating strategy for the outdoor, discharge, and recirculation air dampers of the economizer in VAV system, called split-signal damper control strategy. The strategy controls the outdoor air by only one damper while keeping the remaining dampers full open. The discharge or recirculation air damper is modulated to control the amount of outdoor air introduced into the system while keeping the two remaining dampers full open. Since at least two dampers are always kept fully open during the occupied times, the strategy can provide a minimum static pressure drop in economizer dampers and results in minimum energy use in return and supply fans. An additional advantage is that the proposed strategy prevents reverse airflow through the discharge air damper of a VAV system that uses a volume matching control strategy. The proposed strategy along with the existing strategies such as the three-coupled dampers used in most existing system and the two-coupled dampers are evaluated on an existing system using 1-year long measured data set, along with an economizer damper model developed and validated in this paper. The simulation results show that the annual energy savings in supply and return fans of an existing system, compared to the traditional strategy of three-coupled dampers, are 12% and 5%, respectively.  相似文献   

15.
Dynamic models are developed to simulate the thermal, hydraulic, environmental and mechanic characteristics and energy performance of a building and VAV air-conditioning system under the control of EMCS. Three on-line supervisory strategies and programs based on integrated EMCS stations are developed to optimise the VAV static pressure set-point, AHU outlet air temperature set-point and outdoor ventilation air flow set-point, The strategies and programs are commissioned and evaluated under the simulated ‘real-life’ environment. This paper presents the dynamic models, the control strategies and the simulation exercises for commissioning and evaluation of the strategies.  相似文献   

16.
A robust fault detection and diagnosis (FDD) strategy using a hybrid approach is presented for pressure-independent variable air volume (VAV) terminals in this paper. The residual-based cumulative sum (CUSUM) control charts are utilized to detect faults in VAV terminals. The residuals between the temperature error and its predication are generated using autoregressive time-series models. The standard CUSUM control charts are used to monitor the residuals which are statistically independent. If the CUSUM value exceeds the chart limits, it means the occurrence of fault or abnormity in the corresponding VAV terminal. The residual-based CUSUM control chart can improve the accuracy of fault detection through eliminating the effects of serial correlation on the performance of control charts. Also, the residual-based CUSUM control chart can enhance the robustness and reliability of fault detection through reducing the impacts of normal transient changes. A rule-based fault classifier consisting of expert rules and fault isolation algorithms is developed to isolate 15 fault sources. The FDD strategy was online tested and validated using in real time data collected from real VAV air-conditioning systems.  相似文献   

17.
A study was carried out to investigate the effect of heat-pipe air-handling coil on energy consumption in a central air-conditioning system with return air. Taking an office building as an example, the study shows that compared with conventional central air-conditioning system with return air, the heat-pipe air-conditioning system can save cooling and reheating energy. In the usual range of 22–26 °C indoor design temperature and 50% relative humidity, the RES (rate of energy saving) in this office building investigated is 23.5–25.7% for cooling load and 38.1–40.9% for total energy consumption. The RES of the heat-pipe air-conditioning system increases with the increase of indoor design temperature and the decrease of indoor relative humidity. The influence of indoor relative humidity on RES is much greater than the influence of the indoor design temperature. The study indicates that a central air-conditioning system can significantly reduce its energy consumption and improve both the indoor thermal comfort and air quality when a heat-pipe air-handling coil is employed in the air-conditioning process.  相似文献   

18.
空调系统新风供给形式对室内颗粒污染物的影响   总被引:3,自引:2,他引:1  
着重探讨了风机盘管加新风的空调系统和两种变风量空调系统形式中,新风量,新风过滤效率和室外含尘粒子对室内颗粒污染物的影响,最后指出对一次,二次风的混合进行中效过滤的全空气系统,能够明显提高新风稀释和排除室内粉尘的能力,完全能够满足是用户对环境日益增加的健康和舒适方面的要求。  相似文献   

19.
针对变风量空调实际运行中出现的冷热不均问题,通过运行两种变静压、一种定静压控制策略下的变风量系统,对比分析室温、风量、风机频率、最大阀位、设定静压值与风机能耗的关系。结果表明:变风量箱在设计控制阀门的算法中除设定温度之外还需要考虑IAQ、相对湿度等因素;使用变风量空调之前应将室温降至设定温度后再打开自动控制系统,避免受到算法的延迟影响;定静压输送单位冷负荷需要消耗的电量,比测点靠近风机的变静压控制策略多7.8%,且降温效果较差;外界环境几乎相同的情况下,变静压策略中,静压基础点远离风机的控制策略较靠近风机的控制策略降温效果好,速度至少快14%,消耗电量几乎相同。  相似文献   

20.
Performance of two widely used air conditioning (AC) systems, variable air volume (VAV) and variable refrigerant flow (VRF), in an existing office building environment under the same indoor and outdoor conditions for an entire cooling season is simulated by using two validated respective models and compared. It was observed that the indoor temperatures could not be maintained properly at the set temperature by the VAV no-reheat boxes. However, it could be maintained by the VAV boxes with reheat with a significant energy consumption penalty. It was found that the secondary components (indoor and ventilation units) of the VRF AC system promised 38.0-83.4% energy-saving potential depending on the system configuration, indoor and outdoor conditions, when compared to the secondary components (heaters and the supply fan) of the VAV AC system. Overall, it was found that the VRF AC system promised 27.1-57.9% energy-saving potentials depending on the system configuration, indoor and outdoor conditions, when compared to the VAV AC system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号