共查询到20条相似文献,搜索用时 0 毫秒
1.
Analysis of the energy performance of a ground source heat pump system after five years of operation 总被引:1,自引:0,他引:1
GeoCool plant was the result of a EU project whose main purpose was to adapt ground coupled heat pump technology to cooling dominated areas. The execution of this experimental plant was completed at the end of year 2004, starting on February 2005 the regular operation of the air conditioning system. Since then, GeoCool facility has been monitored by a network of sensors characterizing its most relevant parameters. Several aspects of the performance and behaviour of the system during its first operational year were presented on a previous paper. This paper presents the energy performance measurements of GeoCool ground coupled heat pump system acquired during five years of operation as well as the evolution of the return water temperature from the ground as a representative of the ground temperature. The analysis of the experimental results shows that the system energy performance is maintained through the years with no appreciable impact on ground thermal response. 相似文献
2.
The paper presents the basic parameters and the energy flows of a ground source heat pump system (GSHP) used for air conditioning the New City Hall of Pylaia (Thessaloniki area—Northern Greece). The building is a typical public one, with an air-conditioned area of 1350 m2. The ground source heat pump installation is the largest in Greece, and its operation is monitored with the aid of a DAQ system. The energy flows presented in the paper are based on DAQ recordings of the first 3 years of system's operation. It is proved that the energy demand of the system is significantly lower, compared to that of conventional heating and cooling systems. The seasonal COP of the system has not yet been stabilized, gradually increasing, as it is expected due to the operation of the ground heat exchanger. 相似文献
3.
Vincent Partenay Peter RiedererTristan Salque Etienne Wurtz 《Energy and Buildings》2011,43(6):1280-1287
Ground coupled heat pump systems can offer high energy efficiency for heating and cooling of buildings.The coupling of the ground loop with system and building represents a complex system and system performances can vary over long periods, in the range of 10-15 years due to the charge or discharge of the ground loop. In order to correctly concept, size and optimise these systems, numerical simulation is a perfect tool.The assessment of the global performance of such systems through simulation relies on several parameters, from the physical model validity to the operating conditions and control of the system. Typically, a GCHP system is simulated with a 1-h step. Transient phenomena inside the borehole are often neglected since ground models are mainly developed to characterise long term phenomena. However, detailed system simulations considering a realistic control of the system require much smaller time steps. In these cases, the validity of simulation models has to be verified.This paper proposes a hybrid approach combining experiments and simulation to highlight and quantify the impact of borehole short-time response on the system efficiency and system operation. First, a comparison between steady state and transient models as well as measurement is carried out. It reveals significant influence of dynamic effects inside the borehole. The comparison is then extended a parametric study with annual simulations for different European climates. 相似文献
4.
In this paper we investigate of energetic and exergetic efficiencies of ground-coupled heat pump (GCHP) system as a function of depth trenches for heating season. The horizontal ground heat exchangers (HGHEs) were used and it were buried with in 1 m (HGHE1) and 2 m (HGHE2) depth trenches. The energy efficiency of GCHP systems are obtained to 2.5 and 2.8, respectively, while the exergetic efficiencies of the overall system are found to be 53.1% and 56.3%, respectively, for HGHE1 and HGHE2. The irreversibility of HGHE2 is less than of the HGHE1 as about 2.0%. The results show that the energetic and exergetic efficiencies of the system increase when increasing the heat source (ground) temperature for heating season. And the end of this study, we deal with the effects of varying reference environment temperature on the exergy efficiencies of HGHE1 and HGHE2. The results show that increasing reference environment temperature decreases the exergy efficiency in both HGHE1 and HGHE2. 相似文献
5.
This paper aims to verify the advantages of district heating and cooling (DHC) systems in terms of energy efficiency. From the measurement data, the parameters that characterize the energy efficiency of a heating/cooling plant are identified for DHC and an individual building. A simulation model that considers the difference in these parameters is developed. This model examines both the advantages and disadvantages of DHC systems and the effect of each parameter. The results show that the energy efficiency for cooling in DHC systems is superior to that in the case of individual cooling systems because of the “concentration effect” and “grade of operation”. 相似文献
6.
7.
Development of a numerical model to predict heat exchange rates for a ground-source heat pump system
Ground-source heat pump (GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump (ASHP) systems. For the design of a GSHP system, it is necessary to accurately predict the heat extraction and injection rates of the heat exchanger. Many models that combine ground heat conduction and heat exchangers have been proposed to predict heat extraction/injection rates from/into the ground in the research field of heating, ventilation and air-conditioning systems. However, most analysis models are inaccurate in their predictions for long periods because they are based on a thermal conduction model using a cylindrical coordinate model or an equivalent diameter model. In this paper, a numerical model that combines a heat transport model with ground water flow and a heat exchanger model with an exact shape is developed. Furthermore, a method for estimating soil properties based on ground investigations is proposed. Comparison between experimental results and numerical analysis based on the model developed above was conducted under the conditions of an experiment from 2004. The analytical results agreed well with the experimental results. Finally, the proposed model was used to predict the heat exchange rate for an actual office building in Japan. 相似文献
8.
9.
The main objective of this work is to evaluate a heat pump system using the ground as a source of heat. A ground-coupled heat pump (GCHP) system has been installed and tested at the test room, University of Firat, Elazig, Turkey. Results obtained during experimental testing are presented and discussed here. The coefficient of performance (COPsys) of the GCHP system is determined from the measured data. A numerical model of heat transfer in the ground was developed for determining the temperature distribution in the vicinity of the pipe. The finite difference approximation is used for numerical analysis. It is observed that the numerical results agree with the experimental results. 相似文献
10.
11.
12.
A district heating and cooling system (DHC) is expected to be a promising energy-saving measure for high-density business areas in Japan. However, it has not been verified what advantages of the DHC are important for energy conservation. The clarification of this issue is supposed to contribute to improving the energy efficiency of the DHC. 相似文献
13.
A ground source heat pump (GSHP) system was designed and constructed in Minhang archives of Shanghai. As a demonstration project, it is the first archives to use a GSHP system in China. The system consists of two heat pumps with the rated cooling capacity of 500 kW for each and 280 boreholes with 80 m in depth. In the cooling mode, the heat extraction from the condenser of the heat pump was divided: part of it was rejected to the soil while the rest was used to reheat the air in air handling units. The GSHP system has continuously run for nearly two years. It was shown that the indoor thermal environment met the “Archives Design Code” issued by China national archives. Compared with an air source heat pump system which is widely used in archives buildings, the operating cost of the GSHP system is reduced by 55.8% and the payback time is about two years. Owing to its great potential in energy conservation, such kind of GSHP system is testified to be applicable to the air-conditioning systems of the archives buildings. Besides, the applications of GSHP systems corresponding to different climatic zones of China were analyzed. 相似文献
14.
地埋管换热器的优越性能在当今社会越来越受到重视,在供暖、烘干、能源互补利用方面有广阔的前景。本文基于TRNSYS软件建立上海某建筑的模型系统设计,并介绍了建筑负荷模拟的过程、冷却塔串联和并联方式的模拟计算。针对上海的天气情况、土壤源温度的变化作为原始变量进行了模拟分析,比较得出性能好方案,最后进行较好方案的继续优化。 相似文献
15.
Geothermal energy is critical to achieving more sustainable and environmentally friendly energy usage. Geothermal energy and the availability of the technology, Ground Source Heat Pump (GSHP) systems are becoming increasingly popular for heating and cooling of buildings. GSHP installations in different countries are increasing at a rate greater than 25–60%. The GSHPs produce near zero emissions rates of greenhouse gases (GHGs). 相似文献
16.
17.
18.
The district heating and cooling (DHC) system of a seawater-source heat pump is large system engineering. The investments and the operational cost of DHC pipe network are higher than a tradition system. Traditional design methods only satisfy the needs of the technology but dissatisfy the needs of the economy, which not only waste a mass of money but also bring problems to the operation, the maintenance and the management. So we build a least-annualized-cost global optimal mathematic model that comprises all constrict conditions. Furthermore, this model considers the variety of heating load and cooling load, the operational adjustment in different periods of the year. Genetic algorithm (GA) is used to obtain the optimal combinations of discrete diameters. Some operators of GA are selected to reduce the calculation time and obtain good calculation accuracy. This optimal method is used to the design of the DHC network of Xinghai Bay commercial district which is a real engineering. The design optimization can avoid the matter of the hydraulic unbalance of the system, enhance the running efficiency and greatly reduce the annualized-cost comparing with the traditional design method. 相似文献
19.
In this study, a novel self-regenerating electric vapor compression heat pump desiccant (HPD) unit operated in the heating and humidification mode during the winter season is introduced. The HPD unit was installed in an office suite for the field test. The performance of the HPD unit and the provided indoor conditions were measured over a wide range of operating conditions. The target indoor humidity ratio was set to 4.4 g/kg, which is the minimum required indoor humidity ratio for a comfortable indoor environment indicated in the ASHRAE winter thermal comfort zone. The seasonal comparison revealed that even though 77.7% of all outdoor humidity ratio data was lower than 4.4 g/kg, 78.2% and 85.8% of all the indoor humidity ratio data of each room were found to be higher than 4.4 g/kg. In addition, due to the significant sensible capacity of the HPD unit, the indoor temperatures could be maintained within 20-25 °C. These results prove that the HPD unit not only properly humidifies the indoors without using any additional water source, like the conventional humidifier, but also helps to keep the indoor temperature at the desired temperature levels. 相似文献