首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Automotive fuel cell technology has made considerable progress, and hydrogen fuel cell vehicles are regarded as a possible long-term solution to reduce carbon dioxide emissions, reduce fossil fuel dependency and increase energy efficiency. Even though great strides have been made, durability is still an issue. One key challenge is controlling MEA contamination. Metal ion contamination within the membrane and the effects on fuel cell performance were investigated. Given the possible benefits of using stainless steel or aluminum for balance-of-plant components or bipolar plates, cations of Al, Fe, Ni and Cr were studied. Membranes were immersed in metal sulfide solutions of varying concentration and then assembled into fuel cell MEAs tested in situ. The ranking of the four transition metals tested in terms of the greatest reduction in fuel cell performance was: Al3+ ? Fe2+ > Ni2+, Cr3+. For iron-contaminated membranes, no change in cell performance was detected until the membrane conductivity loss was greater than approximately 15%.  相似文献   

2.
Anode-supported solid oxide fuel cells (SOFC) based on gadolinia-doped ceria (GDC) are developed in this study. A carbonate co-precipitation method is used to synthesize the nano-sized GDC powders. A dense GDC electrolyte thin film supported by a Ni–GDC porous anode is fabricated by dry-pressing and spin-coating processes, respectively. In comparison with dry pressing, it is easy to prepare a thinner electrolyte film by the novel spin-coating method. Cell performance is examined using humidified (3% H2O) hydrogen as fuel and air as oxidant in the temperature range of 500–700 °C. Cell performance is strongly dependent on the electrolyte thickness. With a porous Ni–GDC anode, a dense 19-μm GDC electrolyte film and a porous La0.6Sr0.4Co0.2Fe0.8O3–GDC cathode, the cell exhibits maximum power densities of 130, 253, 386 and 492 mW cm−2 at 500, 550, 600 and 650 °C, respectively. It is also found that at the low operating temperature about 500 °C, the cell resistance is significantly dominated by the electrode polarization resistance.  相似文献   

3.
In this study, the polarization resistance of anode-supported solid oxide fuel cells (SOFC) with La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathodes was investigated by I-V sweep and electrochemical impedance spectroscopy under a series of operating voltages and cathode environments (i.e. stagnant air, flowing air, and flowing oxygen) at temperatures from 550 °C to 750 °C. In flowing oxygen, the polarization resistance of the fuel cell decreased considerably with the applied current density. A linear relationship was observed between the ohmic-free over-potential and the logarithm of the current density of the fuel cell at all the measuring temperatures. In stagnant or flowing air, an arc related to the molecular oxygen diffusion through the majority species (molecular nitrogen) present in the pores of the cathode was identified at high temperatures and high current densities. The magnitude of this arc increased linearly with the applied current density due to the decreased oxygen partial pressure at the interface of the cathode and the electrolyte. It is found that the performance of the fuel cell in air is mainly determined by the oxygen diffusion process. Elimination of this process by flowing pure oxygen to the cathode improved the cell performance significantly. At 750 °C, for a fuel cell with a laser-deposited Sm0.2Ce0.8O1.9 (SDC) interlayer, an extraordinarily high power density of 2.6 W cm−2 at 0.7 V was achieved in flowing oxygen, as a result of reduced ohmic and polarization resistance of the fuel cell, which were 0.06 Ω cm2 and 0.03 Ω cm2, respectively. The results indicate that microstructural optimization of the LSCF cathode or adoption of a new cell design which can mitigate the oxygen diffusion limitation in the cathode might enhance cell performance significantly.  相似文献   

4.
This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H2 supply, a dc–dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm2 and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance.  相似文献   

5.
In this study, an anode-supported solid oxide fuel cell (SOFC) has been prepared using a porous yttria-stabilized zirconia (YSZ) anode matrix. The anode was prepared by impregnating the sintered porous YSZ matrix with a nitrate aqueous containing La3+, Sr2+, Cr3+, Fe3+, Ni2+ and urea. The formed anode exhibited high surface area and porosity, and had fast path for the transportation of oxygen ion and electron, as well as resulting in high three-phase boundaries (TPBs). Single-chamber fuel cell test was conducted in a methane-oxygen gas mixture using an YSZ membrane as the electrolyte and La0.8Sr0.2MnO3−δ (LSM) as the cathode. The influences of environmental temperature and gas composition on the cell performance were also investigated. Under the optimized gas composition (CH4/O2 = 2/1) and furnace temperature (800 °C) conditions, a maximum power density of 214 mW cm−2 was achieved. The test results demonstrated good cell stability and indicated that the perovskite oxide-based anodes were quite robust with redox cycling.  相似文献   

6.
This paper presents, for the first time, a five-cell polymer electrolyte membrane fuel cell (PEMFC) short stack with electrodeposited hydrogen diffusion anodes. The anodes were manufactured by means of galvanostatic pulse electrodeposition and the cathodes by air-brushing. Nafion® 212 was employed as a solid polymer electrolyte membrane in all cases. The short stack, whose cells had an active geometric area of 14 cm2, was assembled and tested under different operating conditions. A peak power of about 11 W was obtained at 50 °C and atmospheric pressure using hydrogen and air feed, whereas a smaller value of 8.6 W was obtained from a five-cell short PEMFC stack with conventional hydrogen diffusion anodes under the same operating conditions. The better performance of the cells described in this paper has been assigned to the higher utilization of the platinum in the electrodeposited anodes compared to the conventional ones.  相似文献   

7.
Anode-supported proton-conducting fuel cell with BaZr0.1Ce0.7Y0.2O3−δ (BZCY) electrolyte and Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) cathode was fabricated. Peak power densities of ∼420 and 135 mW/cm2 were achieved, respectively, at 700 and 450 °C for a cell with 35 μm thick electrolyte operating on hydrogen fuel. The endothermic nature of the ammonia decomposition reaction, however, resulted in cell temperature 30–65 °C lower than the furnace when operating on ammonia. Accounting the cooling effect, comparable power density was achieved for the cell operating on ammonia and hydrogen at high temperature. At reduced temperature, the cell demonstrated worse performance when operating on ammonia than on hydrogen due to the poor activity of the anode towards NH3 catalytic decomposition. By applying on-line catalytic decomposition products of N2H4 as the fuel, similar cell performance to that with NH3 fuel was also observed.  相似文献   

8.
In a high-concentration direct methanol fuel cell (HC-DMFC), the methanol crossover is typically decreased to an acceptable level by two main mechanisms: high methanol transport resistance between the anode reservoir and the membrane electrode assembly (MEA), and high water back flow from the cathode to the anode. Based on the semi-passive HC-DMFC fabricated in this work, the effects of methanol barrier layer (MBL) thickness and electrolyte membrane thickness on cell performance, methanol and water crossover, and fuel efficiency have been studied. The results showed that a thicker MBL could significantly decrease the methanol and water crossover by increasing the mass transport resistance between the anode reservoir and the MEA, while a thinner Nafion® membrane could also significantly decrease the methanol and water crossover by enhancing the water back flow from the cathode through the electrolyte membrane to the anode. Using Nafion® 212 as the electrolyte membrane, and a 6.4 mm porous PTFE plate as the MBL, a semi-passive HC-DMFC operating at 70 °C produced the maximum power density of 115.8 mW cm−2 when 20 M methanol solution was fed as the fuel.  相似文献   

9.
This study proposes a four-layer membrane electrode assembly (MEA) consisting of air-electrode, proton exchange membrane, Zn-electrode with KOH or NaCl aqueous electrolyte and a steel supporter, for use in Zn–air fuel cells. Montmorillonite clay was used to disperse carbon black (CB) and MnO2 catalyst to improve the performance of the air-electrode. The microstructures of the air-electrode and cell characteristics were investigated by field emission scanning electron microscopy (FE-SEM), optical microscopy (OM) and an electrochemical analyzer. The experimental results indicate that the four-layer MEA for Zn–air fuel cells reached a power density of 6 mW cm−2 (at 10 mA cm−2) without electrolyte leakage from the cells. The open circuit voltage (OCV) and current density were improved by adding clay to the air-electrode as clay can minimize CB aggregation. In the polarization test, the OCV value (1.40 V) reached approximately 90% of the standard potential (1.65 V) and remained steadily over 48 h. These experimental results demonstrate the four-layer MEA can replace conventional Zn–air fuel cells that utilize aqueous electrolyte.  相似文献   

10.
A single alkaline direct ethanol fuel cell (alkaline DEFC) with an anion-exchange membrane and non-platinum (non-Pt) catalysts is designed, fabricated, and tested. Particular attention is paid to investigating the effects of different operating parameters, including the cell operating temperature, concentrations of both ethanol and the added electrolyte (KOH) solution, as well as the mass flow rates of the reactants. The alkaline DEFC yields a maximum power density of 60 mW cm−2, a limiting current density of about 550 mA cm−2, and an open-circuit voltage of about 900 mV at 40 °C. The experimental results show that the cell performance is improved on increasing the operating temperature, but there exists an optimum ethanol concentration under which the fuel cell has the best performance. In addition, cell performance increases monotonically with increasing KOH concentration in the region of low current density, while in the region of high current density, there exists an optimum KOH concentration in terms of cell performance. The effect of flow rate of the fuel solution is negligible when the ethanol concentration is higher than 1.0 M, although the cell performance improves on increasing the oxygen flow rate.  相似文献   

11.
A high temperature PEM fuel cell stack with a total active area 150 cm2 has been studied. The PEM technology is based on a polybenzimidazole (PBI) membrane. Cast from a PBI polymer synthesised in our lab, the performance of a three-cell stack was analysed in static and dynamic modes. In static mode, operating at high constant oxygen flow rate (QO2>1105 ml O2/min) produces a small decrease on the stack performance. High constant oxygen stoichiometry (λO2>3) does not produce a decrease on the performance of the stack. There are not differences between operating at constant flow rate of oxygen and constant stoichiometry of oxygen in the stack performance. The effect of operating at high temperature with a pressurization system and operating at higher temperatures are beneficial since the performance of the fuel cell is enhanced. A large shut-down stage produces important performance losses due to the loss of catalyst activity and the loss of membrane conductivity. After 150 h of operation at 0.2 A cm−2, it is observed a very high voltage drop. The phosphoric acid leached from the stack was also evaluated and did not exceed 2% (w/w). This fact suggests that the main degradation mechanism of a fuel cell stack based on polybenzimidazole is not the electrolyte loss. In dynamic test mode, it was observed a rapid response of power and current output even at the lower step-time (10 s). In the static mode at 125 °C and 1 atm, the stack reached a power density peak of 0.29 W cm−2 (43.5 W) at 1 V.  相似文献   

12.
A long-term accelerated test (4600 h) of a 25 cm2 single cell with excess air bleeding (5%) was carried out to investigate the effects of air bleeding on membrane degradation in polymer electrolyte fuel cells. The rate of membrane degradation was negligibly low (fluoride-ion release rate = 1.3 × 10−10 mol cm−2 h−1 in average) up to 2000 h. However, membrane degradation rate was gradually increased after 2000 h. The CO tolerance of the anode gradually dropped, which indicated that the anode catalyst was deteriorated during the test. The results of the rotating ring–disk electrode measurements revealed that deterioration of Pt–Ru/C catalyst by potential cycling greatly enhances H2O2 formation in oxygen reduction reaction in the anode potential range (∼0 V). Furthermore, membrane degradation rate of the MEA increased after the anode catalyst was forced to be deteriorated by potential cycling. It was concluded that excess air bleeding deteriorated the anode catalyst, which greatly enhanced H2O2 formation upon air bleeding and resulted in the increased membrane degradation rate after 2000 h.  相似文献   

13.
A computational fluid dynamics model is developed to investigate the multicomponent cation transport in polymer electrolyte membranes and to predict the performance degradation of the polymer electrolyte fuel cell (PEFC) due to the cationic contamination. A Maxwell–Stefan approach is implemented by modifying the Nernst–Planck equations to model the multicomponent cationic species transport in the membrane. Langmuir isotherms are used to model the non-ideal species adsorption in the membrane. Cation transport model shows good agreement with the experimental data found in the literature. Following the validation of the cation transport model, it is incorporated in a PEFC model framework, which solves for mass, momentum, species and charge conservations. Both fuel side and air side impurities are considered in analyses, which show that for air side impurities current density drops from 0.9 to 0.7 A/cm2 whereas for fuel side impurities current density drops to impractical values as low as 0.05 A/cm2, at the steady-state. Effect of cationic impurity on water transport in the membrane is also investigated and found that cathode dry-out occurs due to decreased water generation in case of fuel side contamination.  相似文献   

14.
The present study involves the evaluation of dimethoxymethane (DMM) (formaldehyde dimethyl acetal, or methylal) and trimethoxymethane (TMM) (trimethyl orthoformate) in direct oxidation liquid-feed fuel cells as novel oxygenated fuels. We have demonstrated that sustained oxidation of TMM at high current densities can be achieved in half-cells and liquid-feed polymer electrolyte fuel cells 1, 2 and 3. In the present study, the performance of dimethoxymethane and trimethoxymethane was compared with that of methanol in 2″ × 2″ (25 cm2 electrode area) and 4″ × 6″ (160 cm2 electrode area) direct oxidation fuel cells. The impact of various parameters upon cell performance, such as cell temperature, anode fuel concentration, cathode fuel pressure and flow (O2 and air), was investigated. Fuel crossover rates in operating fuel cells were also measured for methanol, DMM, and TMM and characterized in terms of concentration and temperature effects. Although DMM and more particularly TMM may present some logistical advantages over that of methanol, such as possessing a higher boiling point, higher flash point, and lower toxicity, the overall performance was observed to be inferior to that of methanol under typical fuel cell operating conditions.  相似文献   

15.
Anode-supported planar solid oxide fuel cells (SOFCs) with an active area of 81 cm2 (9 cm × 9 cm) and nano-structured La0.6Sr0.4Co0.2Fe0.8O3−δ + Y2O3 stabilized ZrO2 (LSCF + YSZ) composite cathodes are successfully fabricated by tape casting, screen printing, co-firing and solution impregnation, and tested using H2 fuel and air oxidant at various flow rates. Maximum power densities of 437 and 473 mW cm−2 are achieved at 750 °C by loading 0.6 and 1.3 mg cm−2 of LSCF in the composite cathodes, respectively. The gas flow rates, particularly the air, have a significant effect on the cell performance. Cell performance degradation with time is also observed, which is considered to be associated with the growth and coalescence of the nanosized LSCF particles in the composite cathode. The use of the LSCF cathode in combination with YSZ electrolyte without a Gd-doped CeO2 (GDC) buffer layer is proved to be applicable in large cells, even though the thermal stability of the nanosized LSCF needs to be further improved.  相似文献   

16.
The initialization of an anode-supported single-chamber solid-oxide fuel cell, with NiO + Sm0.2Ce0.8O1.9 anode and Ba0.5Sr0.5Co0.8Fe0.2O3−δ + Sm0.2Ce0.8O1.9 cathode, was investigated. The initialization process had significant impact on the observed performance of the fuel cell. The in situ reduction of the anode by a methane–air mixture failed. Although pure methane did reduce the nickel oxide, it also resulted in severe carbon coking over the anode and serious distortion of the fuel cell. In situ initialization by hydrogen led to simultaneous reduction of both the anode and cathode; however, the cell still delivered a maximum power density of ∼350 mW cm−2, attributed to the re-formation of the BSCF phase under the methane–air atmosphere at high temperatures. The ex situ reduction method appeared to be the most promising. The activated fuel cell showed a peak power density of ∼570 mW cm−2 at a furnace temperature of 600 °C, with the main polarization resistance contributed from the electrolyte.  相似文献   

17.
We demonstrate that the performance of a high-temperature polymer electrolyte fuel cell with a phosphoric acid-based electrolyte is almost independent of the way of introducing the acid into the membrane electrode assembly (MEA). The same power densities were obtained with different MEAs in which the poly(2,5-benzimidazole) membrane was either pre-doped or not and in which either one or two catalyst layers were impregnated with H3PO4. Chemical analysis after shut down revealed that in all these MEAs the phosphoric acid distribution between the membrane and the electrodes was nearly the same. An MEA with acid impregnation via the electrodes was started up rapidly from room temperature, delivered a power density of 120 mW cm−2 at 600 mV (H2/air, 160 °C, ambient pressure) after only 11 min and was operated for 1000 h (degradation rate: 0.06 mV/h). Based on the analysis of the H3PO4 content in the MEA components, reflections on the kinetics of the redistribution of phosphoric acid within the MEA are provided.  相似文献   

18.
The U.S. program for the development of direct hydrogen-fueled automotive fuel cell systems has established ambitious performance and cost targets for the 2010 and 2015 time frames. These targets include peak and rated power efficiencies of 60% and 50%, respectively, specific power and power densities of 650 We kg−1 and 650 We L−1, and manufactured costs of $45 and 30 kWe−1 for 80 kWe−1 net systems in the 2010 and 2015 systems, respectively. In this paper, we discuss the use of fuel cell system models to examine the performance and projected manufactured costs of 2005 systems and the improvements needed to meet the 2010 and 2015 system level targets. It appears possible to meet most of the 2010 performance targets with advances such as the nano-structured thin film electrocatalysts and a modified electrolyte membrane capable of operating at up to 95 °C, at least for short periods. To meet the 2015 targets, however, the fuel cell systems may need to operate without pressurization at higher temperatures of up to 120 °C without the need to humidify the fuel gas and air, along with several other improvements in stack and balance-of-plant components. Our simulations provide quantitative estimates of the various performance and cost parameters of the near-term and the advanced systems that can achieve the targets set for automotive fuel cell system development.  相似文献   

19.
Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and gadolinia-doped ceria (GDC) were synthesized via a glycine-nitrate process (GNP). A cubic perovskite of BSCF was observed by X-ray diffraction (XRD) at a calcination temperature above 950 °C. An anode-supported solid-oxide fuel cell was constructed from the porous NiO + YSZ as the anode substrate, the yittria-stabilized zirconia (YSZ) as the electrolyte, and the porous BSCF-GDC layer as the cathode with a GDC barrier layer. For the performance test, the maximum power density was 191.3 mW cm−2 at a temperature of 750 °C with H2 fuel and air at flow rates of 335 and 670 sccm, respectively. According to the AC-impedance data, the charge-transfer resistances of the electrodes were 0.10 and 1.59 Ω cm2, and the oxygen-reduction and oxygen-ion diffusion resistances were 0.69 and 0.98 Ω cm2 at 750 and 600 °C, respectively. SEM microstructural characterization indicated that the fuel cell as fabricated exhibited good compatibility between cathode and electrolyte layers.  相似文献   

20.
This study discusses the fabrication and electrochemical performance of micro-tubular solid oxide fuel cells (SOFCs) with an electrolyte consisting a single-grain-thick yttria stabilized zirconia (YSZ) layer. It is found that a uniform coating of an electrolyte slurry and controlled shrinkage of the supported tube leads to a dense, crack-free, single-grain-thick (less than 1 μm) electrolyte on a porous anode tube. The SOFC has a power density of 0.39 W cm−2 at an operating temperature as low as 600 °C, with YSZ and nickel/YSZ for the electrolyte and anode, respectively. An examination is made of the effect of hydrogen fuel flow rate and shown that a higher flow rate leads to better cell performance. Hence a YSZ cell can be used for low-temperature SOFC systems below 600 °C, simply by optimizing the cell structure and operating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号