首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was carried out to investigate the effect of heat-pipe air-handling coil on energy consumption in a central air-conditioning system with return air. Taking an office building as an example, the study shows that compared with conventional central air-conditioning system with return air, the heat-pipe air-conditioning system can save cooling and reheating energy. In the usual range of 22–26 °C indoor design temperature and 50% relative humidity, the RES (rate of energy saving) in this office building investigated is 23.5–25.7% for cooling load and 38.1–40.9% for total energy consumption. The RES of the heat-pipe air-conditioning system increases with the increase of indoor design temperature and the decrease of indoor relative humidity. The influence of indoor relative humidity on RES is much greater than the influence of the indoor design temperature. The study indicates that a central air-conditioning system can significantly reduce its energy consumption and improve both the indoor thermal comfort and air quality when a heat-pipe air-handling coil is employed in the air-conditioning process.  相似文献   

2.
Human response to air movement supplied locally towards the face was studied in a room with an air temperature of 20 °C and a relative humidity of 30%. Thirty-two human subjects were exposed to three conditions: calm environment and facially supplied airflow at 21 °C and at 26 °C. The air was supplied with a constant velocity of 0.4 m/s by means of personalized ventilation towards the face of the subjects. The airflow at 21 °C decreased the subjects' thermal sensation and increased draught discomfort, but improved slightly the perceived air quality. Heating of the supplied air by 6 K (temperature increase by 4 K at the target area) above the room air temperature decreased the draught discomfort, improved subjects' thermal comfort and only slightly decreased the perceived air quality. Elevated velocity and temperature of the localized airflow caused an increase of nose dryness intensity and number of eye irritation reports. Results suggest that increasing the temperature of the air locally supplied to the breathing zone by only a few degrees above the room air temperature will improve occupants' thermal comfort and will diminish draught discomfort. This strategy will extend the applicability of personalized ventilation aiming to supply clean air for breathing at the lower end of the temperature range recommended in the standards. Providing individual control is essential in order to avoid discomfort for the most sensitive occupants.  相似文献   

3.
采用区域供冷的教室热湿环境测试与分析   总被引:1,自引:1,他引:0  
以广州大学城某高校采用区域供冷的典型教室为研究对象,测试了教室内的空气温度和相对湿度,研究了空气状态参数受外界因素影响的变化规律,结果表明:有空调教室热湿环境与无空调教室相比有很大的优越性;部分教室的温、湿度场不均匀,送风口下方一定区域内温度较高;各教室的温、湿度值差别较大,部分顶层大教室的热舒适性不理想;开门窗不仅延长温度和相对湿度达到稳定的时间,而且对室内热湿环境造成较大影响。  相似文献   

4.
Jan Pejtersen 《Indoor air》1996,6(4):239-248
Abstract The sensory pollution load and microbial contamination of glass-fibre filters at high and low relative humidity were investigated in an experimental set-up in the laboratory. Dust and particles from the outdoor air were collected in two EU7 glass-fibre filters for a pre-conditioning period of 16–18 weeks during which there was a constant airflow with a velocity of 1.9 m/s through the filters. One of the filters was exposed to outdoor air of approximately 40% relative humidity and 10°C, the other to outdoor air of approximately 80% relative humidity and 5°C. The dust in ventilation filters can constitute a serious pollution source in the indoor environment, causing deterioration in the quality of the supply air even before it enters the ventilated spaces. The sensory pollution load from the used filters after the continuous operating time of 16–18 weeks was significantly higher than the sensory pollution load from new filters but the sensory load at 40% and 80% relative humidity did not differ. The microbial contamination of the supply air downstream of the filters, which on average had been exposed to outdoor air of 40% and 80% relative humidity, was negligible.  相似文献   

5.
This study examined: (i) biocontaminant levels in flooded homes of New Orleans two years after the flooding; (ii) seasonal changes in biocontaminant levels, and (iii) correlations between biocontaminant levels obtained by different environmental monitoring methods. Endotoxin, (1 → 3)-β-d-glucan, fungal spores, and dust mite allergens were measured in 35 homes during summer and winter. A combination of dust sampling, aerosolization-based microbial source assessment, and long-term inhalable bioaerosol sampling aided in understanding exposure matrices. On average, endotoxin found in the aerosolized fraction accounted for < 2% of that measured in the floor dust, suggesting that vacuuming could overestimate inhalation exposures. In contrast, the (1 → 3)-β-d-glucan levels in the floor dust and aerosolized fractions were mostly comparable, and 25% of the homes showed aerosolizable levels even higher than the dust-borne levels. The seasonal patterns for endotoxin in dust and the aerosolizable fraction were different from those found for (1 → 3)-β-d-glucan, reflecting the temperature and humidity effects on bacterial and fungal contamination. While the concentration of airborne endotoxin followed the same seasonal trend as endotoxin aerosolized from surfaces, no significant seasonal difference was identified for the concentrations of airborne (1 → 3)-β-d-glucan and fungal spores. This was attributed to the difference in the particle size; smaller endotoxin-containing particles can remain airborne for longer time than larger fungal spores or (1 → 3)-β-d-glucan-containing particles. It is also possible that fungal aerosolization in home environments did not reach its full potential. Detectable dust mite allergens were found only in dust samples, and more commonly in occupied homes. Levels of endotoxin, (1 → 3)-β-d-glucan, and fungi in air had decreased during the two-year period following the flooding as compared to immediate measurements; however, the dust-borne endotoxin and (1 → 3)-β-d-glucan levels remained elevated. No conclusive correlations were found between the three environmental monitoring methods. The findings support the use of multiple methods when assessing exposure to microbial contaminants.  相似文献   

6.
The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and local air velocity under a constant air temperature of 26 °C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front toward the upper part of the body (upper chest, head). The subjects could control the flow rate (velocity) of the supplied air in the vicinity of their bodies. The results indicate an airflow with elevated velocity applied to the face significantly improves the acceptability of the air quality at the room air temperature of 26 °C and relative humidity of 70%.  相似文献   

7.
A new design of Wind Tower is investigated numerically under different structural parameters and environmental conditions. The new design is some wetted columns, consisting of wetted curtains hung in the tower column, which are modeled as surfaces that inject droplets of water with very low speed. The CFD open source package - Open FOAM - is used. The current three-dimensional CFD simulation has adopted both the Eulerian approach for the air phase and the Lagrangian approach for the water phase. The effects of water droplet diameter and water droplet temperature on the thermal performance of the Wind Tower are investigated at specific inlet air velocity and relative humidity and height of wetted columns. Also, the effects of wind velocity, temperature, and relative humidity inlet to Wind Tower are studied. Changing the height of the wetted columns and its effect on the evaporative cooling in other specific parameters is studied. The results obtained from the present CFD study are compared with the analytical data taken from the literature and a good agreement is observed. As a result, the height of 10 m of wetted columns decreases 12 K of the ambient air temperature and increases 22% of its relative humidity.  相似文献   

8.
In this study, we investigated the effects of environmental factors such as airflow velocity, relative humidity (RH), temperature, and duct reflectance on the performance of in-duct UVC lamps. Staphylococcus epidermidis, Pseudomonas alcaligenes, and Escherichia coli were used as the test bacteria. The UV irradiance, disinfection efficacy, and UV susceptibility constant (Z value) of the test bacteria were experimentally determined. The results showed that the UV disinfection efficacy decreased as the airflow velocity and RH increased. The maximum UV disinfection efficacy was obtained at temperature of 20-21°C compared with the performance at lower temperature (15-16°C) and higher temperature (25-26°C). When the RH increased from 50% to 90%, the Z values of airborne bacteria reduced by 40%, 60%, and 38% for S epidermidis, P alcaligenes, and E coli, respectively. Besides, susceptibility constants had lower values under both cooling temperature (15-16°C) and heating temperature (25-26°C) compared with that under the temperature of 20-21°C. It was observed that S epidermidis generally had the highest resistance to the UV irradiance. The results also showed that the UV disinfection efficacy was lower in the duct with a black surface than in the clean duct.  相似文献   

9.
In this study, for better understanding the practical removal effect of air handling unit (AHU) system on airborne microorganisms (including bacteria and fungus) and particles and microbial growth, the samples of microorganisms and particles in 10 air handling unit (AHU) systems including fan coils and indoor air were collected and analyzed in air and component surfaces of such systems in two large public buildings. It is found that the removal efficiency is of the highest for bacteria 73.9% and the lowest for particles (0.5–2 μm) 24.4%. The surface concentration of equipment bacteria is 29 CFU/cm2 and fungi 137 CFU/cm2. Five of 10 systems have higher fungi concentrations on air intake than that on diffuser. The results also show that the central air supply system with common components (e.g., pre-filter and bag filter) has difficulty to achieve/maintain good performance once microorganisms and particles exist, especially for particle size D ≤ 3.3 μm. The size distribution has large influence on removal efficiency. The microbial growth on surfaces of duct and equipment was noticed and may be transferred into indoor air. This will decrease the indoor air quality and lead to adverse health effect.  相似文献   

10.
This study used the computational fluid dynamics (CFD) method to evaluate the indoor thermal environment of an air-conditioned train station building under three types of air-conditioning design schemes. The impacts of air-conditioning design parameters such as supply air temperature, velocity, altitude and angle of incidence were also investigated. The numerical results showed that if the waiting hall and entrance hall of the train station building were connected to each other and served with the cooling air respectively, when the cooling loads in the two halls were fixed and air-conditioning systems were designed properly, altering largely the cooling air supply scheme in the waiting hall while keeping the cooling air supply scheme in the entrance hall unchanged would have significant effects on the air distribution and thermal comfort in the occupied region of the waiting hall but may have some minor effects on those in the occupied region of the entrance hall. The uniformities of velocity and temperature distributions in the occupied region of waiting hall were satisfactory when side supply scheme was applied. Changing supply air temperature, velocity, altitude and angle of incidence would yield great effects on the thermal environment in the train station building. For the stratified air-conditioning design in the train station building, in order to obtain the satisfactory thermal comfort in the occupied region, the mid-height of the building was found to be a good position for the cooling air supply and the supply angle of 0° from the horizontal could be recommendable. The results also indicated that analyzing the effects of air-conditioning design parameters on the building environment with CFD was an effective method to find the way to optimize the air-conditioning design scheme.  相似文献   

11.
In this study, the impact factors of temperature, relative humidity (RH), air exchange rate, and volatile organic compound (VOC) properties on the VOC (toluene, n-butyl acetate, ethylbenzene, and m,p-xylene) specific emission rates (SERs) and concentrations from wooden flooring were investigated by chamber test for 8 days. The tested wood in this study is not common solid wood, but composite wood made of combined wood fibers. The experiments were conducted in a stainless-steel environmental test chamber coated with Teflon. The experimental results within 8 days of testing showed that, when the temperature increased from 15 to 30 °C, the VOC SERs and concentrations increased 1.5–129 times. When the RH increased from 50% to 80%, the VOC concentrations and SERs increased 1–32 times. When the air change rate increased from 1 to 2 h−1, the VOC concentrations decreased 9–40%, while the VOC SERs increased 6–98%. The relations between the boiling points of the VOCs and each of the normalized VOC SERs and concentrations were linear with negative slopes. The relations between the vapor pressures of the VOCs and each of the normalized VOC SERs and concentrations were linear with positive slopes. At 15 °C, RH50%, the relations between the diffusivities of VOCs and each of the normalized VOC equilibrium SERs and concentrations were linear with a positive slope.  相似文献   

12.
A series of ventilation, thermal and indoor air quality measurements were performed in 14 different dairy buildings in Estonia and Finland. The number of animals in the buildings varied from 30 to 600. Measurements were made all year round with ambient temperatures ranging between −40 °C and +30 °C. The results showed that microclimatic conditions in the dairy buildings were affected by the design of the building, outside temperature, wind, ventilation and manure handling method. The average inside air concentration of carbon dioxide was 950 ppm, ammonia 5 ppm, methane 48 ppm, relative humidity 70% and inside air velocity was 0.2 m/s. Although occasionally exceeded, the ventilation and average indoor air quality in the dairy buildings were mainly within the recommended limits.  相似文献   

13.
Excessive moisture in building materials supports microbial growth. It has been referred that relative humidity more than 55% promotes the microbial growth. To test the effect of different relative humidity tropical chamber test was set up at 52%, 76%, 85% and 96% RH and maximum diversity of fungi was found at 85% and 96% RH. Two fungi Aspergillus sydowi and Aspergillus flavipes were present throughout the course of study from moderate to highly abundant form. It was observed that Fusarium moniliforme, Cephalosporium acremonium, Papulospora sp. proliferated at higher relative humidity (i.e. at 85% and 96.6% RH) and Fusarium roseum, Fusarium oxysporum only at 96% RH level. The relative humidity level lower than 62%, i.e. at 52% level exhibited no fungal growth on sandstone surface during two-year observations. During the study pattern it was noticed that diversity decreased gradually and dominance of particular species increased with the time factor. Analysis of sandstone after fungal colonization by X-ray diffraction and SEM showed the formation of newly formed biomineral.  相似文献   

14.
This paper presents a study of Perceived Air Quality (PAQ) and Sick Building Syndrome (SBS) using tropically acclimatized subjects in a Field Environmental Chamber (FEC) served by Displacement Ventilation (DV) system. The FEC, 11.12 m (L)×7.53 m (W)×2.60 m (H), simulates a typical office layout. A total of 60 subjects, 30 males and 30 females, were engaged in sedentary office work for 3 h. Air velocity in the space near the subjects was kept at below 0.2 m/s. Relative Humidity (RH) at 0.6 m height and outdoor air provision were maintained at 50% and 10 l/s/p, respectively. Subjects were exposed to three vertical air temperature gradients, nominally 1, 3 and 5 K/m, between 0.1 and 1.1 m heights and three room air temperatures 20, 23 and 26 °C at 0.6 m height. The main objective of this study is to evaluate the influence of temperature gradient and room air temperature (at 0.6 m height) on PAQ and SBS in DV environment. It was found that temperature gradient had insignificant impact on PAQ and SBS. Dry air sensation, irritations and air freshness decreased with increase of room air temperature.  相似文献   

15.
Abstract Fiberglass duct materials are commonly used in both residential and commercial heating, ventilation, and air-conditioning (HVAC) systems to provide the needed thermal insulation and noise control. Many building investigations have documented biocontamination of these materials, and the appropriateness of their use in high humidity locations has come into question. A series of experiments, each lasting 6 weeks, was conducted in static environmental chambers to assess some of the conditions that may impact the ability of a variety of fiberglass materials to support the growth of a fungus, Penicillium chrysogenum. Three different fiberglass duct liners (FDL), one fiberglass duct board, and fiberglass insulation, all newly purchased, were obtained as were samples of used (>5 years old) materials. Samples of these materials were tested to evaluate the effects of moisture, soil, use, and temperature on their ability to support the growth of P. chrysogenum. These studies demonstrated that P. chrysogenum could amplify under conditions of low (12°C) and room (23°C) temperature and high relative humidity on samples of one of the newly purchased materials, and that either wetting and/or soiling increased the materials’ susceptibility. P. chrysogenum was able to grow on all the used material samples. While the results of this study apply directly only to fiberglass duct materials, they suggest that dust accumulation and/or high humidity should be properly controlled in any HVAC duct to prevent the growth of P. chrysogenum.  相似文献   

16.
This research shows the result of a brainstorming by medical experts in the first ranking university medical school and hospital of Thailand. It was based on Delphi technique. The objective of this research was to study both direct and indirect effects of humidity and temperature on human health in air-conditioned buildings in Thailand. Afterwards, the result was used to design and develop split type air conditioner (conventional air conditioner) which could control relative humidity and temperature with precision air conditioning system to comply with the climate and the suitability of the people living in Thailand building. The result of operation with precision inverter air conditioning system showed that the temperature inside the room changed from the default value around ±0.2 °C (Case 1) and around ±0.35 °C (Case 2) and it could control relative humidity as a desired condition between 50-60% (both cases) which was the appropriate range for Thai climate. Moreover, energy consumption of precision inverter air conditioning system was still less than conventional air conditioning system for about 7.5%. This research could provide people living in Thailand air conditioned building with human thermal comfort and health.  相似文献   

17.
Experiments were conducted to study the effect of mechanically induced fresh-air ventilation on the indoor air quality (IAQ) of the Tuskegee Healthy House (THH), selecting the outdoor weather conditions almost identical during the “fan OFF” and “fan ON” periods. Measurements of outdoor and indoor temperature and relative humidity (RH), in addition to the indoor dust particle concentration levels and interior wall moisture content, were systematically carried out during the summer month of August 2008. Results show that the effect of mechanically induced ventilation (“fan ON” period) is to raise the indoor RH, interior wall moisture content, and indoor dust particle concentration values significantly above those measured during the “fan OFF” period. The indoor temperature increases only slightly during the “fan ON” period.  相似文献   

18.
The temperature and humidity independent control (THIC) system, which controls indoor temperature and moisture separately, may be an attractive alternative to existing conventional HVAC systems for its prominent improvement on the overall system performance and utilization of low grade energy resources. In order to verify the effectiveness of THIC system, a pilot project has been implemented in an office building in Shenzhen, China. In the system, liquid desiccant fresh air handling units driven by heat pumps are utilized to remove the entire latent load of outdoor air supplied for the whole building, and chilled water at the temperature of 17.5 °C from chiller is pumped and distributed into dry fan coil units and radiant panels to control indoor temperature. This paper presents the results of field test of the system, which shows that the system can provide a comfortable indoor environment even in very hot and humid weather. The COP of the entire THIC system can reach 4.0. According to the energy usage data recorded from the year 2009, the energy consumption of the THIC system in the tested office building was 32.2 kWh/(m2 yr), which demonstrates magnificent energy-saving potential compared with the conventional air-conditioning system (around 49 kWh/(m2 yr)).  相似文献   

19.
Hourly mean time series of dust concentration (PM10) measured at 3 m high and a sonic-anemometer measured momentum and kinematic heat fluxes at 8 m high above the surface have been obtained from a 20-m monitoring tower located at Erdene in the Asian dust source region of Mongolia for years of 2009 and 2010. These time series were used to identify dust events and to develop optimal regression equations for the dust concentration of dust events with the friction velocity (u*) and the convective velocity scale (w*). In total, 68 dust events were identified in 2009 (except for November) and 43 dust events for the period from March to August in 2010. The duration of each dust event ranged from 3-29 h in 2009 and 5-35 h in 2010. The maximum hourly mean dust concentration of the dust event was found to be 4,107 μg m− 3 in May in 2009 and 4,708 μg m− 3 in March in 2010 while a minimum of 251 μg m− 3 in August in 2009 and 662 μg m− 3 in June in 2010. The optimal regression equation for the dust concentration (C) of dust events was found to have the form of log C = a + b(u* + cw*)n, where a, b, c and n are constants that vary month to month. The convective velocity scale (w*) that has not been taken into account in most dust modelings was found to enhance the dust concentration of dust events during the cold period from December to March when the soil temperature was below the freezing level for both the stable (w* < 0) and unstable (w* > 0) stratifications, whereas the convective velocity caused a reduction in the dust concentrations during the warm period from April to October, suggesting the importance of the convective velocity to estimate dust concentration of dust events.  相似文献   

20.
In the warm and humid climate zone, air-conditioning (AC) is usually provided at working places to enhance human thermal comfort and work productivity. From the building sustainability point of view, to achieve acceptable thermal sensation with the minimum use of energy can be desirable. A new AC design tactic is then to increase the air movement so that the summer temperature setting can be raised. A laboratory-based thermal comfort survey was conducted in Hong Kong with around 300 educated Chinese subjects. Their thermal sensation votes were gathered for a range of controlled thermal environment. The result analysis shows that, like in many other Asian cities, the thermal sensation of the Hong Kong people is sensitive to air temperature and speed, but not much to humidity. With bodily air speed at 0.1–0.2 m/s, clothing level 0.55 clo and metabolic rate 1 met, the neutral temperature was found around 25.4 °C for sedentary working environment. Then recommendations are given to the appropriate controlled AC environment in Hong Kong with higher airflow speeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号