首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To minimize environmental impact and CO2 production associated with air-conditioning, it is reasonable to evaluate the prospects of a clean energy source. Solar energy, via thermal collectors can provide a part of the heating needs. Moreover, it can drive absorption chiller in order to satisfy the cooling needs of buildings. The objective of the work is to evaluate accurately the energy consumption of an air-conditioning system including a solar driven absorption chiller. The complete simulation environment includes the absorption chiller itself, the cooling tower, the solar collectors field, heater, storage devices, pumps, heating-cooling distribution, emission system and building. A decrease of primary energy consumption of 22% for heating and cooling is reached when using a solar air-conditioning system instead of classical heating and cooling devices. The modelling of each subsystem is detailed. TRNSYS software modular approach provides the possibility to model and simulate this complete system.  相似文献   

2.
Zhang  Lun  Jing  Jun  Duan  Mengfan  Qian  Mingyang  Yan  Da  Zhang  Xiaosong 《Building Simulation》2020,13(2):349-361

A typical district cooling system (DCS) with a chilled water storage system is analyzed in hot summer and cold winter area in China. An analysis method concerning operation modes is proposed based on measured data, which is obtained by long term monitoring and on-site measurements of cooling season. The DCS operates at partial load for a large proportion of the cooling time; in particular, the partial-load rate (PLR) can be less than 25% for more than 50% of the total cooling season. In the night, PLR reaches 5% of the peak load. Thus, it is critical to achieve efficient operation under partial-load conditions of the DCS. Installation of chilled water thermal storage presents a solution to improve the working condition of the DCS and chillers. From the beginning to the end of the cooling season, the DCS operation can be summarized by typical operation modes according to cooling demand and chiller operation. For each mode, the base-load chiller operated at a high-load rate, with an average value of 0.88, and the coefficient of performance (COP) remained in a small range, between 4.2 and 5.2. The average energy efficiency ratio (EER) of the DCS for the cooling season was 3.65 and 3.81 for Years A and B, respectively. With respect to the economics, chillers used 90.2% of off-peak electricity, at only half the price of peak electricity.

  相似文献   

3.
Air conditioning of buildings is responsible for a large percentage of the greenhouse and ozone depletion effect, as refrigerant harmful gases are released into the atmosphere from conventional cooling systems. The need to implement advanced new concepts in building air conditioning systems is more crucial than ever today.Solar cooling systems (SCS) have the advantage of using absolutely harmless working fluids such as water, or solutions of certain salts. They are energy efficient and environmentally safe. They can be used, either as stand-alone systems or with conventional AC, to improve the indoor air quality of all types of buildings. The main goal is to utilize “zero emissions” technologies to reduce energy consumption and reduce CO2 emissions.Amongst cooling technologies, absorption cooling seems to have a promising market potential.In this paper, the performance and economic evaluation of a solar heating and cooling system of a hospital in Crete, is studied using the transient simulation program (TRNSYS). The meteorological year file exploited the hourly weather data where produced by 30-year statistical process. The required data were obtained by Hellenic National Meteorological Service.The objective of this study is to simulate a complete system comprised of a solar collector, a storage tank, a backup heat source, a water cooling tower and a LiBr-H2O absorption chiller. The exploitation of the results of the simulation provided the optimum sizing of the system.  相似文献   

4.
A numerical model of the solar-thermal-assisted heating, ventilation and air conditioning system in a 7000 m2 educational building, situated in a high-desert climate, is used to predict performance and optimize control parameters. Heating, cooling and shoulder seasons are considered in the study. It is found that the solar assist can account for over 90% of the total heating requirements if certain energy conservation strategies are adopted. The solar cooling assist can reduce the total external cooling energy requirement by between 33% and 43%, the latter result achieved, surprisingly, at lower solar array operating temperatures. In the shoulder season, it is possible to operate the building without any external contribution, by heating the building in the coldest hours of the day, and using any excess heat to produce chilled water, to be stored and used when required. Operation of the solar-assisted system within a much larger district energy system makes it possible to achieve maximum performance.  相似文献   

5.
近年来,我国北方地区新建住宅的采暖系统多数采用地板辐射供暖技术,而制冷系统仍采用传统的空调制冷技术,有必要对地板辐射制冷技术的应用进行研究,为此,针对一套实验用太阳房,搭建了太阳能地板辐射供暖制冷系统.通过计算确定了集热器面积、蓄热水箱体积、吸收式制冷机组的制冷量.利用TRNSYS仿真平台建立了系统仿真模型,并对控制策略进行了验证.仿真结果表明,该系统能有效地利用太阳能保持冬季室温18℃左右、夏季26℃左右的舒适温度.  相似文献   

6.
Due to the high cost of fossil fuels and the environmental problems caused by the extensive use of air-conditioning systems for both residential and industrial buildings, the use of solar energy to drive cooling cycles becomes attractive since the cooling load is roughly in phase with solar energy availability particularly in Tunisia. In this paper, we present a research project aiming at assessing the feasibility of solar-powered absorption cooling technology under Tunisian conditions. Simulations using the TRNSYS and EES programs with a meteorological year data file containing the weather parameters of Tunis, the capital of Tunisia, were carried out in order to select and size the different components of the solar system to be installed. The optimized system for a typical building of 150 m2 is composed of a water lithium bromide absorption chiller of a capacity of 11 kW, a 30 m2 flat plate solar collector area tilted 35° from the horizontal and a 0.8 m3 hot water storage tank.  相似文献   

7.
In order to compensate for imbalance in solar energy between different sides of a building, and the resultant difference in energy availability and (heating/cooling) demand, methods using offsetting were developed to adjust occupiers’ energy bills. In the case of solar electricity generation, a model was considered, in which all the power is routed through common meter(s), so that total electricity generated is recorded. Equal proportions of this metered energy can then be deducted from occupiers’ individual meter readings, to give the net energy use for which each user is billed. Computer-based models were used to calculate the imbalance on those energy demands, which are affected by solar gain, i.e., space heating and cooling. The offset was calculated, such that all users pay the same bill for a given thermostat setting, and are charged more or less, for settings which result in higher or lower energy consumption respectively. Several case studies were performed, in which one building parameter was changed between successive trials. It was found that the offset was different in each case. Therefore, it is necessary to calculate the offset separately for each location, and for each building, depending on those parameters related to solar and thermal energy exchange.  相似文献   

8.
The feasibility of using low-cost solar collection and storage technology to provide energy for residential units is investigated. Different construction strategies were compared including traditional housing practice against newly innovative ideas such as low radiant heating system, desiccant dehumidification, integrated low-cost solar collection, and phase-change material (PCM) storage. The selected building, located in Blacksburg, VA, integrated a solar thermal roof collection system consisting of a low-temperature flat-plate collector integrated within a concrete building envelope linked to a PCM storage tank. For the considered location and weather conditions (Blacksburg, VA), the proposed collection and storage solar system can supply 88% of the building's space heating and hot water needs averaged throughout the year saving the homeowner approximately 61.5% of the annual heating bills. However, the use of a storage system is not economical for the considered conditions. The paper also shows a month-by-month demand and supply distributions for the modeled building's heating and hot water needs.  相似文献   

9.
The performance of a solar combisystem with a long-term thermal storage capacity is investigated for a typical one-storey detached house in Montreal. Simulation results from the TRNSYS program show that, starting with the second year, the system is able to cover fully the heating and domestic hot water thermal loads using the solar energy exclusively. The solar combisystem with seasonal storage capacity is technically feasible, can be built with equipment currently available, and can lead to significant energy savings in the residential sector in Montreal. The Energy Payback Time index shows that the embodied energy initially invested in the equipment is recovered in less than 6 years through the thermal energy savings. The current barriers to the deployment of such a system at large scale are the low electricity rates in Quebec, the high initial costs and the absence of substantial financial incentives.  相似文献   

10.
An investigation has been made of potential lighting electricity reductions and associated thermal impacts of replacing electric light with sunlight admitted through rooftop glazing on a single-story, prototypical office building. Experimental scale models have been used to determine the fraction of the solar radiation entering the aperture which reaches the work plane as useful illumination. This information is used in a developmental version of the building energy analysis computer program BLAST-3.0 to predict reductions in lighting electricity and the impacts on energy consumption for heating and cooling the building. The results indicate that a large fraction of the electricity consumed for lighting a single-story office building can be displaced using modest amounts of glazing in the roof. Also, both heating and cooling energy consumption reductions are possible from a daylighting system, but they are substantially smaller than the potential lighting electricity reductions. The design implications of the results are discussed and future directions for the work are outlined.  相似文献   

11.
热水与光伏系统集光器的姿态区别   总被引:1,自引:0,他引:1  
热能和电能是建筑必需的能量形式,因此在太阳能建筑中热水和光伏系统应同时考虑。为了扩大太阳能在建筑能源结构,特别是多层和高层建筑能源结构中的比例,集光器的安装部位也不应局限于屋顶,而必须向立面拓展。不同形式的能量其主要使用的季节也不同,因此集光器的姿态和部位应有明显区别。该文拟从辐射条件、供需同步性及对遮挡及组合面变化的敏感性方面对影响集光器姿态的因素进行分析,并结合设计实例进行探讨。  相似文献   

12.
传统太阳能光伏或光热建筑一体化只能为建筑提供单一电能或热能。通过研究一种集成发电、集热、制冷3种功能的建筑一体化电热冷联产光伏组件,对其夏季工况下能量特性进行了实际检测。结果表明:白天,组件集热同时能有效降低光伏电池温度,组件工作温度高于环境温度约8~16℃,发电和集热效率分别为14.1%~13.7%和40.1%~15.7%;晴朗夜间,组件通过对流和辐射两种传热方式进行散热制冷,总制冷功率为26.0~268.5 W/m~2。电热冷联产光伏组件适合与热泵结合,为建筑提供所需能源。  相似文献   

13.
Latent heat thermal energy storage (LHTES) is becoming more and more attractive for space heating and cooling of buildings. The application of LHTES in buildings has the following advantages: (1) the ability to narrow the gap between the peak and off-peak loads of electricity demand; (2) the ability to save operative fees by shifting the electrical consumption from peak periods to off-peak periods since the cost of electricity at night is 1/3–1/5 of that during the day; (3) the ability to utilize solar energy continuously, storing solar energy during the day, and releasing it at night, particularly for space heating in winter by reducing diurnal temperature fluctuation thus improving the degree of thermal comfort; (4) the ability to store the natural cooling by ventilation at night in summer and to release it to decrease the room temperature during the day, thus reducing the cooling load of air conditioning. This paper investigates previous work on thermal energy storage by incorporating phase change materials (PCMs) in the building envelope. The basic principle, candidate PCMs and their thermophysical properties, incorporation methods, thermal analyses of the use of PCMs in walls, floor, ceiling and window etc. and heat transfer enhancement are discussed. We show that with suitable PCMs and a suitable incorporation method with building material, LHTES can be economically efficient for heating and cooling buildings. However, several problems need to be tackled before LHTES can reliably and practically be applied. We conclude with some suggestions for future work.  相似文献   

14.
Shanghai is characteristic of subtropical monsoonal climate with the mean annual temperature of 17.6 °C, and receives annual total radiation above 4470 MJ/m2 with approximately 2000 h of sunshine. A solar energy system capable of heating, cooling, natural ventilation and hot water supply has been built in Shanghai Research Institute of Building Science. The system mainly contains 150 m2 solar collector arrays, two adsorption chillers, floor radiation heating pipes, finned tube heat exchangers and a hot water storage tank of 2.5 m3 in volume. It is used for heating in winter, cooling in summer, natural ventilation in spring and autumn, hot water supply in all the year for 460 m2 building area. The whole system is controlled by an industrial control computer and operates automatically. Under typical weather condition of Shanghai, it is found that the average heating capacity is up to 25.04 kW in winter, the average refrigerating output reaches 15.31 kW in summer and the solar-enhanced natural ventilation air flow rate doubles in transitional seasons. The experimental investigation validated the practical effective operation of the adsorption cooling-based air-conditioning system. After 1-year operation, it is confirmed that the solar system contributes 70% total energy of the involved space for the weather conditions of Shanghai.  相似文献   

15.
Large electricity consumers are often charged of a high price for their peak demand for the purpose of reducing the capacity and cost, as well as the operation reliability of electricity transmission facilities. As a result, even one spike in the monthly demand profile would result in a significant increase in electricity bill. Peak demand limiting techniques provide an effective and efficient means to reduce such cost. For instance, the methods to utilize cooling/heating stored in building thermal mass by resetting space air temperature set-point have been proofed effective in many studies. This study proposes a direct chiller power limiting control strategy for peak demand limiting control in buildings, particularly during the period of chiller starting when the peak demand occurs mostly. Validation tests were conducted on-site in a super high rise building and on a dynamic simulation platform. Results showed the strategy was effective in reducing the peak demand during chiller starting periods.  相似文献   

16.
《Energy and Buildings》1995,23(1):19-31
This paper presents a comprehensive analysis on the optimal control protocol to minimize the daily operating cost of an air-conditioning system in a 33 600 m2 office building. The system consists of two chillers, one designated for cold storage charging, the other for direct cooling, an air-handling unit, a cooling tower, and water pumps. This analysis determines the optimal protocol for indoor temperature and humidity control as well as operating point settings for the chiller control considering two thermal storage sources: (i) the thermal capacitance of the building, and (ii) a cold storage facility. The analysis is based on the thermodynamic modeling of the air-conditioning system including the thermal response of the building structure. A discussion of operating cost savings is presented for several outdoor conditions and electricity rates. Furthermore, the load shift potentials are discussed for each storage source. The results of this analysis indicate significant savings can be achieved by precooling the building during hours of low electricity rates. The resulting load shifting can be augmented by utilizing cold storage equipment. The results are discussed in detail for Seattle climatic conditions and electric rates. A regional comparison of the results for the four US locations, Seattle, WA; Phoenix, AZ; San Diego, CA; and the island of Hawaii, is given.  相似文献   

17.
Solar cooling is emerging as one of the most interesting applications in the harnessing of solar energy for alternative uses. Current devices can effectively control the climates of small buildings while addressing the issues associated with the excessive thermal energy captured during the summer months. This article presents an exergy analysis of buildings with solar thermal systems used for Domestic Hot Water (DHW) production and heating and cooling support. The cooling system analyzed is a LiCl–H2O thermally driven heat pump with integral energy storage that uses outdoor swimming pools as heat sink. All subsystems were integrated into the model and considered as a single energy system, and data from installations in three different locations were used. The influences of the heating and cooling demand ratios and the dead state and house temperatures were analyzed. Further, the use of dissipated energy was analyzed, demonstrating that the proposed method facilitates the realistic study of these systems and provides useful analytical tools for improving the overall exergy performance. The energy delivered for heating, cooling and DHW production strongly influences global performance, suggesting that the appropriate sizing of each system is a priority.  相似文献   

18.
This paper explores the potential of reducing the annual energy consumption of a central air-conditioned building through advanced evaporative cooling systems. The building considered is a typical three floor library building of a University. The regenerative evaporative cooling technology is coupled with the liquid cooled water chiller system to accomplish the energy conservation objective. Comparisons of the regenerative evaporative cooling are made with simple evaporative cooling to bring out the importance such a system. The well-known building simulation software, TRNSYS is used to carry out the heat load calculations and the dynamic simulations of the building. Annual energy consumptions of different components of the air-conditioning system are estimated for the existing water chiller system as well as for both coupled evaporative cooling systems (simple and regenerative). The annual energy consumptions, the indoor temperature, the relative humidity and the thermal comfort index ‘PMV’ are compared for all the three different air-conditioning systems. The coupling of direct and regenerative evaporative cooling technologies with water chiller system has shown, respectively, 12.09% and 15.69% savings in annual energy consumption of the building, while maintaining PMV between ?1 and +1 for most of the hours in the year.  相似文献   

19.
The purpose of this paper is to clarify energy performance of the cooling plant system in the industrial building using actual measured operating data and numerical simulation analysis. One aspect of industrial buildings is that they have large energy consumption for manufacturing and air-conditioning compared with office and commercial buildings. Some examples of high-efficiency technologies installed in this particular cooling plant system are inverter chillers, integrated cooling towers and a free-cooling system. The inverter chiller which has been put on the market recently is state-of-the-art technology. The maximum COP of the inverter chiller reaches about 18 under certain conditions and integrated cooling towers make lower temperature cooling water as the whole capacity is large. Actual operating data indicates satisfied values for chiller and system COP during the running period and the simulation results show that the cooling plant system can cut down annual electric power consumption by about 48% compared with conventional cooling system.  相似文献   

20.
王长宁 《建筑节能》2016,(10):33-35
太阳能地板辐射采暖系统与相变储能技术结合使用是新能源利用的一种重要方法。介绍了一种太阳能、热泵、低谷电辅热与相变储能地板联合运行的复合地板辐射采暖系统;讨论了系统组成、运行原理以及运行流程;分析了该采暖系统在节能环保、室内热舒适性等方面的优点;展望了其良好的发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号