首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluid flow and heat transfer inside a triangular enclosure due to instantaneous heating on the inclined walls are investigated using an improved scaling analysis and direct numerical simulations. The development of the unsteady natural convection boundary layer under the inclined walls may be classified into three distinct stages including a start-up stage, a transitional stage and a steady state stage, which can be clearly identified in the analytical and numerical results. A new triple-layer integral approach of scaling analysis has been considered to obtain major scaling relations of the velocity, thicknesses, Nusselt number and the flow development time of the natural convection boundary layer and verified by direct numerical simulations over a wide range of flow parameters.  相似文献   

2.
Transient pollutant flushing of buoyancy-driven natural ventilation   总被引:1,自引:0,他引:1  
The transient flushing of neutrally-buoyant pollutants from a naturally ventilated enclosure is investigated. A simplified transient model for buoyancy-driven natural ventilation produced by a point source of heat is presented to describe the ventilation development from the plume generation to its steady state. The instantaneous thermal stratification interface height and ventilation flow rate and the time taken for the flow to reach the steady state are then examined by the transient model. The results indicate that the decrease of the thermal stratification interface height with dimensionless time, the steady-state interface height and the dimensionless time taken for the flow to reach the steady state are only determined by the dimensionless effective area of the vents. The ventilation flow rate can be increased by decreasing the enclosure floor area or increasing the effective vent area, enclosure height or source buoyancy flux. Accordingly, for rooms with smaller floor area, larger effective vent area or larger source buoyancy flux, ventilation airflow provides more effective flushing of neutrally-buoyant pollutant. Nevertheless, increasing the enclosure height is only beneficial to flush the pollutant from the lower layer rapidly and is disadvantageous to reduce the pollutant concentration of the upper layer.  相似文献   

3.
Weekly storage of coolness in heavy walls (walls with large thermal inertia or large characteristic time constants or low Fourier numbers) was investigated numerically by considering one-dimensional heat conduction through the walls. The study consisted of first analyzing the heat flow through a single wall and considering various boundary conditions on the inside. The boundary conditions were: constant inside air tempeture throughout the day, variable inside air temperature on a 24-hour cycle, and variable inside air temperature on a 48-hour cycle. Next, the heat flow through walls was studied through a thermal network analysis of a simple building. In this case it was assumed that the ambient air temperature (following a periodic distribution) was increased suddenly and followed this new distribution for many days thereafter.It was concluded that walls with high thermal inertia or time constant can store coolness for several days. The larger the time constant of the wall (for example adobe as compared with brick) the longer it takes for the wall temperature to reach a steady periodic distribution after the change has occurred. However, because of low thermal conductivity of adobe, the retrieval of the stored coolness in these walls is slow, and the mean daily temperature of the room air in the adobe building does not change appreciably beyond seven days after the change. Increase of the wall thickness beyond 50 cm does not improve the thermal performance of the building significantly.  相似文献   

4.
Unsteady natural convection inside a triangular cavity subject to a non-instantaneous heating on the inclined walls in the form of an imposed temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the flow from start-up to a steady-state has been described based on scaling analyses and direct numerical simulations. The ramp temperature has been chosen in such a way that the boundary layer is reached a quasi-steady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness, then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently. It is seen that the shape of many houses are isosceles triangular cross-section. The heat transfer process through the roof of the attic-shaped space should be well understood. Because, in the building energy, one of the most important objectives for design and construction of houses is to provide thermal comfort for occupants. Moreover, in the present energy-conscious society it is also a requirement for houses to be energy efficient, i.e. the energy consumption for heating or air-conditioning houses must be minimized.  相似文献   

5.
Participation of the radiation and free convection in the heat transferred from the ceiling surface of a room to other internal surfaces has been investigated in this study. A model enclosure representing a room was constructed and equipped with a radiant ceiling heating system. In order to have a thermal map over both internal and external surfaces of the enclosure, 108 elements were specified over the walls, floor and ceiling of the enclosure. Temperatures at both sides of the elements were measured using an infrared thermometer and k-type thermocouples under steady state heat flow condition. Using the measured temperatures, conductive heat transfer through the compartment elements was first calculated. A model based on the net-radiation method was employed to compute the radiation exchanges between internal surfaces of the elements. Convection participation was also specified using radiation and conduction for each element. Based on the results, more than 90% of the heat is transferred by the radiation from the heated ceiling to the other surfaces of enclosure. The participation of the radiation increases slightly as the ceiling temperature is increased.  相似文献   

6.
《Building and Environment》2005,40(7):887-896
This paper describes the evolution and application of an efficient dynamic thermal modelling (DTM) procedure, developed within computational fluid dynamics (CFD). The results of a case study to simulate the dynamic thermal conditions within a typical office space using the novel DTM–CFD procedure are reported. The main area of investigation was the ability to account for the time-varying thermal response of building fabrics to internal and external ambient conditions and the consequential effect on the air inside the enclosure. The proposed DTM–CFD procedure utilised a transient time-varying grid schedule, ‘Freeze-Flow’ and ‘Boundary Freeze’ techniques. ‘Freeze Flow’ paused the solution of all governing equations of fluid flow, except temperature; while ‘Boundary Freeze’ froze temperatures at boundaries of the CFD model whilst solving all equations in the flow domain. The DTM–CFD procedure provides the potential for solving the problem of generating large quantities of data, whilst effectively and accurately modelling heat transfer through the building fabric and internal air simultaneously using CFD alone. An assessment of the performance of the DTM–CFD procedure was made through inter-model comparisons with fully transient CFD solutions. The procedure was successful in providing more detailed dynamic thermal simulations than would have otherwise been obtainable from a DTM and more efficiently (simulation time) than a CFD model.  相似文献   

7.
《Fire Safety Journal》1996,27(1):23-35
A model was developed previously for calculating combined buoyancy- and pressure-driven (i.e. forced) flow through a shallow, circular, horizontal vent where the vent-connected spaces are filled with fluids of different density in an unstable configuration (density of the top fluid is larger than that of the bottom). In this paper the model is summarized and then applied to the problem of steady burning in a ceiling-vented enclosure where normal atmospheric conditions characterize the upper-space environment. Such fire scenarios are seen to involve a zero to relatively moderate cross-vent pressure difference and bidirectional exchange flow between the enclosure and the upper space. A solution to the problem leads to a general result that relates the rate of energy release of the fire to the area of the vent and the temperature and oxygen concentration of the upper portion of the enclosure environment. This result is seen to be consistent with previously published data from experiments involving ceiling-vented fire scenarios.  相似文献   

8.
Domed skylights are important architectural design elements that deliver daylight and solar heat into buildings, and connect the building's occupants to the outdoor environment. Despite the widespread use of domed skylights, there is limited information on the convective heat transfer within cavities of multi-glazed domes. This information is required to evaluate the thermal performance of domed skylights for product rating purposes, or to evaluate the heat loss or gain of installed skylights in buildings. This article presents a numerical study on the laminar natural convection in horizontal concentric domed cavities heated from the inside surface. A commercial CFD package is used to solve for the flow and temperature fields. The results show that for large cavity gap spacing-to-radius ratios, the cavity flow is mono-cellular and steady state. For small gap spacing ratios, however, the cavity flow may be multi-cellular and transient periodic. Practical correlations for the heat transfer coefficient as a function of the cavity shape and gap spacing ratio are developed for both flow regimes. The critical gap spacing ratio that yields the maximum Nusselt number is quantified for each cavity shape.  相似文献   

9.
The aim of the present work is to study numerically 2-D steady state coupled heat transfer by conduction, free convection and infra-red radiation through two honeycomb walls separated by a vertical air layer. Airflow in both holes and separating air layer is laminar. The limiting vertical sides of the double honeycomb wall are assumed to be isothermal but at different temperatures while the upper and lower horizontal surfaces of the structure are insulated. The FVM method and the SIMPLE algorithm are used to solve numerically the equations of conservation of mass, momentum and energy in both air filled cavities and solid partitions. It is found that the global heat flux across the entire wall varies almost linearly with the difference between the outside and the inside temperatures. Based on this linear thermal behaviour, appropriate overall heat exchange coefficients are derived. These coefficients can be used easily in practice to predict the global heat transfer across the studied honeycomb walls without solving the detailed and complex equations that govern the different heat transfer mechanisms. Effect of the thermal conductivity of the construction material on the overall heat transfer through double honeycomb walls is studied.  相似文献   

10.
The transient and steady states of the flow generated by a heat source inside a closed room provided with a cooled-ceiling system at constant temperature are experimentally studied. During the transient regime the plume generated by the source interacts with the ambient fluid and, after it reaches the top contour, spreads under the latter giving place to the formation of a horizontal thermal front that eventually descends affecting the whole room. It is found that the formation and velocity of the descending front are determined by the filling-box model in an insulated space but with a smaller temperature difference between both sides of the front. The steady state is established when the heat supplied by the source is completely absorbed by the ceiling allowing a convective process to take place characterized by a turbulent flow in the major part of the room and by a thermal boundary layer developed below the ceiling, where vortexes and little plumes form, the detection of which is allowed by the application of synthetic schlieren technique. Analogies with the results obtained in the classical Rayleigh-Benard experiments allow an insight of the mechanisms of heat transfer in order to improve the indoor comfort in buildings under similar conditions to those discussed here.  相似文献   

11.
《Building and Environment》2005,40(5):701-718
A detailed model is developed for predicting the ventilation rates of the indoor, conditioned zone of a house and the attic zone. The complete set of algorithms is presented in a form for direct incorporation in a two zone ventilation model. One of the important predictions from this model is the leakage flow rate between the indoor and attic zones. Ventilation rates are predicted from a steady state mass flow rate balance for each zone where all individual flow rates through leakage sites are based on a power law expression for flow rate versus pressure difference. The envelope leakage includes distributed leakage associated with background leakage, localized leakage associated with vents and flues, and active fan ventilation. The predicted ventilation rates agree quite well with field measurements of ventilation rates in houses and attics with different leakage configurations, without the use of any empirically adjusted parameters or constants.  相似文献   

12.
The paper presents a concept of an indirect heating and cooling technique of residential buildings driven by solar thermal radiation called Thermal Barrier (TB), which is composed of polypropylene U-pipes located inside of external walls. Fluid flows inside a U-pipes system with a variable mass flow rate and variable supply temperature. This creates a semi-surface parallel to wall surfaces and a spatially averaged temperature almost constant and close to the reference temperature of 17 °C all year round. The TB technique is used to stabilize and reduce heat flux normal to the wall surface and to maintain its direction from internal air out to ambient air during the entire year. The main intention of this paper is to investigate the thermal performance and stability of Thermal Barrier. A 3D FE model of a prefabricated external wall component containing a TB U-pipe system with flowing fluid is developed using the FE code of ABAQUS. The FE analysis is supported by a novel SVC control system implemented in FORTRAN to simulate real-working conditions. The advantages of the TB heating/cooling technique are outlined.  相似文献   

13.
段飞  赵丽博  李政 《建筑节能》2011,39(6):41-43
以钻孔壁为界,将U型埋管的换热区域划分为内外两个部分。对于钻孔外的土壤部分,通过圆柱热源模型建立了非稳态分析解模型;对于钻孔内部,考虑到流体温度的沿程变化以及两管之间的热干扰,利用能量平衡原理建立了稳态分析解模型。内外两部分之间通过钻孔壁温耦合连接。  相似文献   

14.
《Energy and Buildings》1996,24(3):183-194
During the cooling season, heat transfer from the attic into the conditioned space of a residence can represent a significant portion of the total envelope heat transfer. Radiant barriers are one method used to reduce this heat transfer. A quasi-steady-state model was developed for predicting attic heat transfer in residences with radiant barrier systems. The model was used to estimate the reduction in cooling load that would occur with a radiant barrier and to identify important construction and environmental parameters that influence this cooling load reduction. The model's output consisted of hourly ceiling heat fluxes inside the house based on hourly weather data inputs. Model results were compared with detailed experimental results from two small test houses. The model predicted typical summer heat flux reductions of between 35 and 43% with different radiant barrier configurations and levels of insulation. These compared to measured heat flux reductions of between 29 and 37% in attics under the same conditions. Sensitivity studies were also conducted to show the effect of uncertainty in several of the important physical attic parameters on the final heat flow predictions of the model.  相似文献   

15.
ABSTRACT

The model is developed as the steady magnetohydrodynamic (MHD) flows with an angular velocity between parallel porous plates are considered. The problem is solved analytically by using similarity transformation, whose solution deals with increasing fluid flow with an angular velocity. The applications in MHD are power generators, polymer technology, cooling system, petroleum industry, aerodynamics heating used. The objective of this paper is to analyse the steady MHD flow of viscous fluid with an angular velocity between parallel porous plates when the fluid is being withdrawn through both the walls of the channel at the same rate. The problem is reduced to a third-order linear differential equation which depends on a Suction Reynolds number R and M 1 for which an exact solution is obtained.  相似文献   

16.
This paper presents a review of studies on natural convection heat transfer in the triangular enclosure namely, in attic-shaped space. Much research activity has been devoted to this topic over the last three decades with a view to providing thermal comfort to the occupants in attic-shaped buildings and to minimising the energy costs associated with heating and air-conditioning. Two basic thermal boundary conditions of attic are considered to represent hot and cold climates or day and night time. This paper also reports on a significant number of studies which have been performed recently on other topics related to the attic space, for example, attics subject to localized heating and attics filled with porous media.  相似文献   

17.
A computational fluid dynamics (CFD) model is developed to study thermal performance of hollow autoclaved aerated concrete (AAC) blocks in wall constructions of buildings under hot summer conditions. The goal is to determine size and distribution of cavities (within building blocks) that reduce heat flow through the walls and thereby lead to energy savings in air conditioning. The model couples conjugate, laminar natural convective flow of a viscous fluid (air) in the cavities with long-wave radiation between the cavity sides. Realistic boundary conditions were employed at the outdoor and indoor surfaces of the block. A state-of-the-art building energy simulation programme was used to determine the outdoor thermal environment that included solar radiation, equivalent temperature of the surroundings, and convective heat transfer coefficient. The CFD problem is put into dimensionless formulation and solved numerically by means of the control-volume approach. The study yielded comprehensive, detailed quantitative estimates of temperature, stream function and heat flux throughout the AAC block domain. The results show a complex dependence of heat flux through the blocks on cavity and block sizes. In general, introducing large cavities in AAC blocks, being a construction material of low thermal conductivity, leads to greater heat transfer than the corresponding solid blocks. Several small cavities in a block may lead to small reductions in heat flux, but the best configuration found is a large cavity with a fine divider mesh in which case heat flux reductions of 50% are achievable.  相似文献   

18.
为了研究环境降温作用对混凝土主塔早期开裂的影响,通过求解热传导方程推导出降温作用下主塔塔壁的温度分布公式,进而通过分析混凝土早期弹性模量、徐变影响,导出计入时变效应的塔壁表面温度应力计算公式。得到反映环境降温作用的温度~时间、应力~时间关系曲线。结果表明:环境降温作用将导致塔壁表面产生拉应力,应力值大小与塔壁内外表面放热系数、塔壁厚度、混凝土水化热、环境降温值、降温起始及持续时间等因素密切相关;上述因素偏不利时,会引发混凝土主塔开裂。  相似文献   

19.
Froude-based scaling relationships had previously been theoretically extended to, and experimentally validated in the laboratory for, water mist suppression of fires in open environment and in enclosures, which were shown applicable to gas, liquid and solid combustible fires. Before applying these relationships to real-world settings, their applicability needs to be further evaluated for the intended protection. This paper presents such an evaluation on scaling water mist fire extinguishment in an industrial machinery enclosure. In this evaluation exercise, a full-scale water mist protection set-up tested for a 260-m3 machinery enclosure was selected as the benchmark. A ½-scale machinery enclosure test replica was then constructed, together with a ½-scale nozzle whose orifices were geometrically similar to those of the full-scale nozzle. Spray measurements indicated that the ½-scale spray closely met the scaling requirements, in terms of discharge K-factor, water mist flux, droplet velocity and droplet size distribution. Two spray fires and one pool fire, which were scaled with the respective full-scale fires, were used to challenge the water mist protection in the ½-scale enclosure. At least five replicated tests were conducted for each of the four tested fire scenarios. Overall, the instantaneous local gas temperature and oxygen concentration measured inside the ½-scale enclosure for each fire scenario agreed reasonably well with those measured at the corresponding locations inside the full-scale enclosure, meeting Froude modeling's requirement that scalar quantities be preserved in different scales. The fire extinguishment times obtained from the ½-scale tests for each fire scenario were also statistically consistent with that observed in the corresponding full-scale test. Based on the obtained results, it is concluded that, for machinery enclosures and other similar occupancies, the previously laboratory-validated scaling relationships for water mist fire suppression can be used to determine the fire extinguishing performance of a full-scale water mist protection in a ½-scale test facility.  相似文献   

20.
空心砌块通风墙体是一种新型的建筑围护结构,该结构可以利用空调系统排风、地道风或夏季夜间凉风对空心砌块墙体的空腔进行通风,实现墙体内部冷、热量的转移。该技术将热回收或可再生能源利用与降低墙体内部冷/热量结合起来,可削弱室外气候对室内环境的影响,减小墙体内表面温度的波动,从而改善人体的热舒适性。为了研究该新型通风墙体的传热特性,建立了空心砌块通风墙体的二维简化传热模型。并且在稳态情形下,计算分析了该通风墙体内表面的平均温度。还进一步研究了空心砌块通风墙体的当量热阻及其影响因素。结果表明空心砌块通风墙体能获得较低的墙体内表面温度和较高的当量热阻,同时,也降低了室内负荷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号