首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The energy performance of a window depends on its thermal transmittance, the glazing solar transmittance, and the air leakage due to the frame and installation airtightness.In new installations air leakage represents a quite small term which is almost independent from the window and in particular from the glazing system selection.The contributions of the two other terms to the building thermal balance are not independent to each other: the most effective thermal insulating glazing, as triple glazings, are generally characterized by low solar transmittance reducing solar gains. The thermal energy balance of the building is then affected not only in summer but also in winter, potentially increasing heating energy need.This work evaluates the impact of different kinds of glazing systems (two double and two triple glazings), window size (from 16% to 41% of window to floor area ratio), orientation of the main windowed façade and internal gains on winter and summer energy need and peak loads of a well insulated residential building. The climatic data of four localities of central and southern Europe have been considered: Paris, Milan, Nice and Rome. A statistical analysis has been performed on the results in order to identify the most influencing parameters.  相似文献   

2.
Measuring or estimating thermal properties of anisotropic building materials can be key obtaining the optimum performance for a particular application. The intensive researches on development of new building materials have necessitated in situ thermal testing apparatuses in most research laboratories. Only few standardized techniques are available for accurate thermal testing of anisotropic materials, and they are generally expensive. In the present study, common thermal testing methods are reviewed in brief. A simple and inexpensive thermal testing technique is proposed. The measurement is based on analysis of transient data, which is suitable for comparing effective thermal transmittances of both isotropic and anisotropic building materials. Sample measurements with ordinary concrete and rubberized concretes are performed. The effective thermal transmittances of rubberized concretes are found to be considerably lower than that of the ordinary one.  相似文献   

3.
The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs and floors can be between 0.1 and 0.2 W/(m2 K). The best windows have U-factors of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e., solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use are of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define material research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.  相似文献   

4.
It is possible to evaluate the energy demand as well as the parameters related to indoor thermal comfort through building energy simulation tools. Since energy demand for heating and cooling is directly affected by the required level of thermal comfort, the investigation of the mutual relationship between thermal comfort and energy demand (and therefore operating costs) is of the foremost importance both to define the benchmarks for energy service contracts and to calibrate the energy labelling according to European Directive 2002/92/CE. The connection between indoor thermal comfort conditions and energy demand for both heating and cooling has been analyzed in this work with reference to a set of validation tests (office buildings) derived from a European draft standard. Once a range of required acceptable indoor operative temperatures had been fixed in accordance with Fanger's theory (e.g. −0.5 < PMV < −0.5), the effective hourly comfort conditions and the energy consumptions were estimated through dynamic simulations. The same approach was then used to quantify the energy demand when the range of acceptable indoor operative temperatures was fixed in accordance with de Dear's adaptive comfort theory.  相似文献   

5.
Thermal properties of the different building envelopes, such as thermal transmittance in steady state, heat storage capacity and dynamic thermal responses, must be taken into account during the design phase of buildings. The evaluation and measurement of these parameters in multilayered samples are difficult because of the irregular morphology of the used materials and the difficulty in providing the well-controlled environment needed for the measurements. A new equipment has been designed to measure the thermal response and heat capacity of composite walls of different materials simulating real building envelopes.The equipment presented in this paper was used to test the improvement in the thermal response of a building envelope due to the incorporation of PCM. This study is focused on wood structural panels attached to a gypsum board, which is either impregnated or not with PCM. The four edges of the composite sample are properly insulated to ensure one-dimensional heat flow. The two faces of the sample are exposed to controlled environments heated and cooled by copper coils with thermo stated water supplied by water baths. The measured surface heat fluxes at both surfaces of the sample and temperature distribution in the sample provide accurate assessment to thermal mass and dynamic response of the composite wall, while the steady state measurements provide an accurate estimate of its effective thermal transmittance.  相似文献   

6.
Energy conscious building design consists in controlling the thermophysical characteristics of the building envelope such as, firstly, thermal transmittance (U-value). However, besides the U-value, the envelope thermal inertia should also be considered. The literature studies report very different estimations regarding the energy saving potential associated with the use of an adequate inertia, ranging from a few percentages to more than 80%. Therefore, this study aims at assessing the parameters enhancing or damping the role of thermal inertia, providing a variety of results. For this purpose several external wall systems with the same U-value but different dynamic properties were investigated to calculate the associated achievable energy savings. A parametric analysis was performed in progressive steps, by running the models of a virtual Test Cell and of a sample building. Both design parameters (heat transfer surface, solar control) and operational ones (ventilation rates, HVAC functional regime) were varied.It was found that the highest energy performance wall system has a proper combination of the dynamic thermal transmittance and thermal admittance values, although not necessarily the best ones. Moreover, it was shown that thermal inertia effects are enhanced if it is coupled with other energy saving measures and an efficient building use.  相似文献   

7.
The aim of this work is to analyze the possibility of optimizing an abstract, symmetrical with respect to the north–south axis form of a building with vertical walls and windows, and constant volume and height. The external south partitions of the building are walls with whole windowpanes. The heat losses through walls, floors, roof and the gain of solar radiation through transparent partitions with respect to their direct correlation with the shape of building form are next taken into consideration. The gain of solar energy for the north part of the building have been disregarded.  相似文献   

8.
在建筑热工计算中,确认构成传热过程的各环节后,利用串联热阻叠加原理可免去繁琐的推导。应用串联热阻叠加原理分析了平行的无限大平面,遮热板的遮热效果,计算了带封闭阳台房间封闭部分的基本耗热量。  相似文献   

9.
This article deals with both an experimental study and a numerical model of the thermal behaviour of a building whose roof is equipped with photovoltaic panels (PV panels). The aim of this study is to show the impact of the PV panels in terms of level of insulation or solar protection for the building. Contrary to existing models, the one presented here will allow us to determine both the temperature field of the building and the electric production of the PV array. Moreover, an experimental study has been conducted in La Reunion Island, where the climate is tropical and humid, with a strong solar radiation. In such conditions, it is important to minimise the thermal load through the roof of the building. The thermal model is integrated in a building simulation code and is able to predict the thermal impact of PV panels installed on buildings in several configurations and also their production of electricity. Basically, the PV panel is considered as a complex wall within which coupled heat transfer occurs. Conduction, convection and radiation heat transfer equations are solved simultaneously to simulate the global thermal behaviour of the building envelope including the PV panels; this is an approach we call ‘integrated modelling’ of PV panels. The experimental study is used to give elements of validation for the numerical model and a sensitivity analysis has been run to put in evidence the governing parameters. It has been shown that the radiative properties of the PV panel have a great impact on the temperature field of the tested building and the determination of these parameters has to be taken with care.  相似文献   

10.
The main objective of this study is to investigate the energetic and exergetic performances of a latent energy storage system in both charging (solidification) and discharging (melting) processes. A shell-and-tube TES unit was designed, constructed and tested in Dokuz Eylul University, Izmir, Turkey. This experimental unit basically consisted of a heat exchanger section, a measurement system and flow control systems. For the charging mode, the inlet temperatures varied to be −5 °C, −10 °C and −15 °C, while the volumetric flow rates changed to be 2 l/min, 4 l/min and 8 l/min. The experiments were performed for three different tube materials, copper, steel and PE32 and two various shell diameters of 114 mm and 190 mm to investigate the tube material and shell diameter effects on energetic and exergetic efficiencies. It may be concluded that for the charging period, the exergetic efficiency increased with the increase in the inlet temperature and flow rate. For discharging period, irreversibility increased as the temperature difference between the melting temperature of the PCM and the inlet temperature of the heat transfer fluid (HTF) increased and hence the exergy efficiency increased.  相似文献   

11.
The building's energy performance is the result not only of material and component performances, but also of the way the components are interconnected. Concerning windows, their energy performance, which is usually evaluated by using the glass and frame heat transfer coefficients and the linear heat transfer coefficients of the glazing spacer, depends also on the frame installation. In this paper the entity of thermal losses due to the frame installation has been evaluated in terms of linear thermal transmittance calculated in accordance with the standard EN ISO 10211:2007 using THERM 5.2. The analysis of thermal bridges between a wooden frame window installed into two different kinds of external clay block walls has been carried out. The linear thermal transmittances have been calculated for three cases regarding the position (external, internal, and intermediate) and three concerning the insulation of the hole perimeter (non insulated, insulated and with insulation over fixed frame). The impact of the window installation on thermal losses has been estimated and its dependence on different sizes has been evaluated. A new graphical representation has been suggested. The frame position and the configuration of the window hole insulation result to have a relevant impact on the overall thermal performance of the considered window.  相似文献   

12.
Using a mathematical model of heat transfer of basement, the calculation area is divided into eight rectangles according to the interzone temperature profile estimation (ITPE) technology, and the solution obtained for all the parts by the separation of variables technique. During the solution, the Fourier coefficients are determined by the continuity of the heat flux and boundary conditions, as a result, a system of linear equation group including 14N14N equations has been obtained. The effect of building materials on the temperature and heat flux for the building envelope has been evaluated by calculating the temperature and heat flux for three buildings built with different building materials. The results show that the highest relative error in heat flux among the three envelopes built with various non-insulation material is 27.8%, which indicates the thermal conductivity of the building materials is an important factor of the heat transfer of the envelope.  相似文献   

13.
This article investigates building thermal mass control of commercial buildings to reduce utility costs with a particular emphasis on the individual impacts of both adaptive comfort criteria and of heat waves. Recent changes in international standards on thermal comfort for indoor environments allow for adaptation to the weather development as manifested in comfort criteria prEN 15251.2005 and NPR-CR 1752.2005 relative to the non-adaptive comfort criterion ISO 7730.2003. Furthermore, since extreme weather patterns tend to occur more frequently, even in moderate climate zones, it is of interest how a building's passive thermal storage inventory responds to prolonged heat waves. The individual and compounded effects of adaptive comfort criteria and heat waves on the conventional and optimal operation of a prototypical office building are investigated for the particularly hot month of August 2003 in Freiburg, Germany. It is found that operating commercial buildings using adaptive comfort criteria strongly reduces total cooling loads and associated building systems energy consumption under conventional and building thermal mass control. In the case of conventional control, total operating cost reductions follow the cooling loads reductions closely. Conversely, the use of adaptive comfort criteria under optimal building thermal mass control leads to both lower and slightly higher absolute operating costs compared to the optimal costs for the non-adaptive ISO 7730. While heat waves strongly affect the peak cooling loads under both conventional and optimal building thermal mass control, total cooling loads, building energy consumption and costs are only weakly affected for both control modes. Passive cooling under cost-optimal control, while achieving significant total cost reductions of up to 13%, is associated with total energy penalties on the order of 1–3% relative to conventional nighttime setup control. Thus, building thermal mass control defends its cost saving potential under optimal control in the presence of adaptive comfort criteria and heat waves.  相似文献   

14.
Outdoor testing of buildings and building components under real weather conditions provides useful information about their dynamic performance. Such knowledge is needed to properly characterize the heat transfer dynamics and provides useful information for implementing energy saving strategies, for example. For the analysis of these tests, dynamic analysis models and methods are required. However, a wide variety of models and methods exists, and the problem of choosing the most appropriate approach for each particular case is a non-trivial and interdisciplinary task. Knowledge of a large family of these approaches may therefore be very useful for selecting a suitable approach for each particular case.  相似文献   

15.
The impact of thermal mass on the thermal performance of several types of Australian residential construction, namely: cavity brick (CB), brick veneer (BV), reverse brick veneer (RBV), and light weight (LW) constructions, was examined numerically using the commercial AccuRate energy rating tool developed by the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO). The performance of each construction type was evaluated using four different hypothetical building envelopes, referred to here as building modules. It was found that the thermal mass had a dramatic impact on the thermal behaviour of the modules studied, particularly in those where the thermal mass was within a protective envelope of insulation. The RBV and CB constructions were found to be the most effective walling systems in this regard.  相似文献   

16.
It is well known that it is necessary to insulate the buildings to decrease the thermal demand and to decrease the use of heating and cooling. Due to the high cost of fossil fuels and to the necessity to reduce CO2 emissions, and also due to the new building regulations more attention is paid to the insulation of buildings. Different insulation materials are available in the market. Usually, they are compared by their thermal conductivity and with theoretical calculations, but there are no experimental comparisons available, where the behavior of such insulation materials in a building is compared over time. This is why the authors started a comparison of three typical insulation materials, polyurethane, polystyrene, and mineral wool. For this purpose, four house-like cubicles were constructed (with a size of 2.4 m × 2.4 m × 2.4 m) and their thermal performance throughout the time was measured. The cubicles were built under a conventional Mediterranean construction system, differing only in the insulation material used. During 2008 and the first months of 2009 the performance of these cubicles was evaluated, and the results are presented in this paper.  相似文献   

17.
李育生 《山西建筑》2014,(10):104-105
结合某高架体工程实例,从架体的搭设、计算分段等方面入手,详细介绍了框架结构层间高架体的设计和施工技术,并总结了模架的施工质量保证措施及安全监测措施,为以后同类型的工程施工积累了经验。  相似文献   

18.
建筑节能保温工程是建筑工程施工的重要组成部分。建筑施工技术人员应对建筑节能保温技术高度重视,从系统的材料、设计、施工工艺及管理等几个方面着手,确保外墙外保温技术的原材料及施工质量,促进建筑投资效益和生态环境的可持续发展。  相似文献   

19.
ISO 7730 Standard classifies thermal environments in three categories as a function of the PMV range value, gradually decreasing according to the need of a lower dissatisfied percentage. It is noteworthy that the PMV value is greatly affected by the changes of its independent variables (air temperature, mean radiant temperature, air velocity, relative humidity, metabolic rate and clothing insulation); therefore the accuracy requirements of sensors for the measurement of environmental quantities as well the assessment of other parameters related to the activity and clothing appear a crucial matter. This work deals with a sensitivity analysis of PMV index to the accuracy of its six independent variables. Obtained results clearly show that the widths of PMV ranges fixed for each class in 7730 are near to the PMV uncertainty related to measuring devices accuracy, making often the environment classification a random operation.  相似文献   

20.
Correlation between thermal conductivity and the thickness of selected insulation materials for building wall has been analyzed. The study has found that a relationship between the thermal conductivity (k) and optimum thickness (xopt) of insulation material is non-linear which obeys a polynomial function of xopt = a + bk + ck2, where a = 0.0818, b = −2.973, and c = 64.6. This relationship will be very useful for practical use to estimate the optimum thickness of insulation material in reducing the rate of heat flow through building wall by knowing its thermal conductivity only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号