共查询到20条相似文献,搜索用时 0 毫秒
1.
Schools are the most suitable type of building for the application of energy efficiency and good indoor air quality measures. This is justified by the fact that such measures can promote sustainability to the future citizens, and even more, ensure a comfortable and healthy environment for educational purposes. Unfortunately, in practice school buildings face the same, or even more intense, energy performance and indoor air quality problems as any other building. The purpose of this study is to investigate the energy efficiency, thermal environment and indoor air quality in public nursery and elementary school buildings in the city of Kozani, located at the cold climatic zone of Greece. The survey, conducted both by in-field measurements and by questionnaires, reveals the main parameters affecting the overall performance of the investigated buildings. The problematic building envelope, the improper control of heating and lighting systems, the absence of proper legislative measures and, above all, the lack of interest concerning the efficiency of such buildings are the main factors in the reported efficiency. 相似文献
2.
Detailed investigation of ventilation rates and airflow patterns in a northern California residence 下载免费PDF全文
Y. Liu P. K. Misztal J. Xiong Y. Tian C. Arata W. W. Nazaroff A. H. Goldstein 《Indoor air》2018,28(4):572-584
Building ventilation rates and indoor airflow conditions influence occupants’ exposure to indoor air pollutants. By making time‐ and space‐resolved measurement of 3 inert tracers steadily released in a single‐family house in California for 8 weeks in summer and 5 weeks in winter, this study quantifies the air change rate of the living zone with 2‐hour time resolution; estimates airflow rates between the living zone, attic, and crawlspace; and characterizes mixing of air in the split‐level living space. Occupant behaviors altered the air change rates, primarily through opening windows and secondarily through operating the heating system. The air change rate correlated with the number of window openings, accounting for 57% of the variability measured across 2 seasons. There were substantial upward interzonal airflows between the crawlspace, living zone, and attic; downward airflows were negligible by comparison. More than 70% of the airflow entering the living zone in the winter and at night during summer came through the crawlspace, rather than directly from outdoors. The airflow from the living zone to the attic increased with the attic‐outdoor temperature difference, indicating that buoyancy associated with solar heating of the attic induced airflow from the living zone, increasing the air change rate. 相似文献
3.
Control tuning of a simplified VAV system: Methodology and impact on energy consumption and IAQ 总被引:1,自引:0,他引:1
Nowadays, with the improvement of living standards, air-conditioning systems have been widely used causing more health problems linked to air-conditioning systems and indoor air quality. When an air handling unit is designed for a conference room, its variable use demands an outdoor air rate control in particular to optimize energy consumption of the new air heating/cooling. Based on an experimental site, the present work shows how to combine air quality and the improvement of energy consumption thanks to a way to define a control strategy. The control problem considered here is the management of air quality associated to a control of the outdoor air rates. A review of classical tuning methods is led in order to select suitable ones. Thus, a linearization of the phenomena must be done to border the system expression in tuning methods. Several classical methods are studied and the family model is chosen: monovariable and multivariable applications are brought to fruition. Simulations and applications permit to enhance energy consumption through the choice of a strict way to tune such control equipments. 相似文献
4.
Zhang Lin T.T. ChowC.F. Tsang K.F. FongL.S. Chan W.S. ShumLuther Tsai 《Building and Environment》2009
This paper presents a case to investigate the effect of partitions in an office on the performance of under floor air supply ventilation system via computational fluid dynamics. The assessment is in terms of thermal comfort and indoor air quality with the use of a validated computer model. The results indicate that the partitions may significantly affect airflow and performance of a under floor air supply ventilation system. In particular, the presence of a gap above the partition wall is able to improve air distribution owing to less air re-circulation in the upper zone. Its effect on thermal comfort and indoor air quality indicators are evaluated. 相似文献
5.
Two super-insulated houses were constructed near Sendai City in accordance with the Canadian R-2000 manual (Canadian Home Builders' Assoc., 1987). Shelter performance, thermal environment, air quality and energy consumption of these two houses were investigated for one year. The two super-insulated houses were very airtight compared with other houses. The one-year measurement of room temperature and humidity for one super-insulated house showed that the daily mean temperature for the dining-living room and the master bedroom was 15°C-20°C during the winter and 22°C-28°C during the summer. Absolute humidity for these rooms was less than 5 g/kg (DA) during the winter. The indoor environment of the two super-insulated houses during the heating season was more thermally comfortable, compared with that of ordinary houses in Japan. During the summer, the indoor temperature in these two houses was stable during the day and did not decrease at night even if the outdoor air temperature dropped. The CO2 concentration in these two houses was lower than that of other airtight houses due to continuous mechanical ventilation. The space heating energy consumption for one super-insulated house was less than that of ordinary houses in Tohoku District in which only the living-dining room was heated. 相似文献
6.
Hospital and healthcare facilities have diverse indoor environment due to the different comfort and health needs of its occupants. Currently, most ventilation studies revolve around specialised areas such as operating rooms and isolation rooms. This paper focuses on the ventilation of multiple-bed hospital wards in the tropical climate, taking into account the design, indoor conditions and engineering controls. General ward layouts are described briefly. The required indoor conditions such as temperature, humidity, air movements and indoor air quality in the ward spaces are summarized based on the current guidelines and practices. Also, recent studies and engineering practices in the hospital indoor environment are elaborated. Usage of computational fluid dynamics tools for the ventilation studies is discussed as well. As identified during the review, there is an apparent knowledge gap for ventilation studies in the tropics compared with temperate climates, as fact studies have only been published for hospital wards in countries with a temperate climate. Therefore, it is highlighted that specific tropical studies along with novel engineering controls are required in addressing the ventilation requirements for the tropics. 相似文献
7.
8.
In this work, the combined effect of the energy conservative variable refrigerant volume (VRV) system and the variable air volume (VAV) system was experimentally investigated using genetic fuzzy optimization method that yielded better thermal comfort, indoor air quality (IAQ) requirements without compromising on the energy savings potential. The proposed system was tested using the demand controlled ventilation (DCV) combined with the economizer cycle ventilation (ECV) techniques and examined for a year-round building air conditioning (A/C) application. The supply air temperature (SAT) set points were varied under three distinct strategies and the optimal solutions obtained for the fuzzy systems designed resulted in an enhanced energy conservative potential. The test results of the proposed system were compared with the conventional fan coil A/C system. Based on the three strategies of the supply air temperature, the proposed system yielded an improved per day energy savings potential of 54% in summer and 61% in winter design conditions. Furthermore, for the strategies considered the proposed system achieved an annual energy conservative potential of 36% and exhibited more possible ways to achieve thermal comfort, IAQ and energy conservation. 相似文献
9.
Malcolm Owen Ng Ming Qu Pengxuan Zheng Zhiyuan Li Yin Hang 《Energy and Buildings》2011,43(11):3216-3225
CO2-based demand controlled ventilation had been tried and tested in the United States under the old ASHRAE Standard 62 “Ventilation for Acceptable Indoor Air Quality”, but this had since been replaced by ASHRAE Standard 62.1 and little is known on the field about the relative performances of CO2-based demand controlled ventilation between the old and new ventilation standards. In view of that, this paper presents a case study for an American elementary school gymnasium in order to compare the implementation of CO2-DCV under the old and new ventilation standards in terms of control strategies involved, the resulting energy savings, and indoor air quality associated with each strategy. The results indicate that, compared to the existing fixed ventilation rate strategy at which the ventilation rate is always 5% of the total supply air flow, a cooling coil energy savings of 0.03% and 1.86% can be achieved using an occupancy detection control strategy under the new ASHRAE 62.1 and old ASHRAE 62 respectively, while preserving thermal comfort and indoor air quality. 相似文献
10.
Energy conscious design of school buildings, as well as deemed-to-satisfy provisions in a Performance Based Energy Code, should address the problem known as the energy efficiency—thermal comfort—indoor air quality dilemma (EE-TC-IAQ Dilemma). In warm and moderate climates, the large internal heat sources usually found in school buildings prevent achieving thermal comfort without active cooling in summer, but are not sufficient to eliminate the need for heating in winter. Commonly used air-conditioners do not improve air quality, while natural ventilation induces uncontrolled energy losses. In this study, a step by step process was used for the development of deemed-to-satisfy design solutions, which cope with the EE-TC-IAQ Dilemma, for a performance based code. A distinction is made between improving building design variables and improving ventilation schemes. Results indicate that implementation of improved ventilation schemes in an otherwise well designed energy-conscious building result in savings of 28–30% and 17–18% for northern and southern classroom orientations, respectively. 相似文献
11.
In a typical air-conditioned office, the thermal comfort and indoor air quality are sustained by delivering the amount of supply air with the correct proportion of outdoor air to the breathing zone. However, in a real office, it is not easy to measure these airflow rates supplied to space, especially when the space is served by a variable air volume (VAV) system. The most accurate method depends on what is being measured, the details of the building and types of ventilation system. The constant concentration tracer gas method as a means to determine ventilation system performance, however, this method becomes more complicated when the air, including the tracer gas is allowed to recirculate. An accurate measurement requires significant resource support in terms of instrumentation set up and also professional interpretation. This method deters regular monitoring of the performance of an airside systems by building managers, and hence the indoor environmental quality, in terms of thermal comfort and indoor air quality, may never be satisfactory. This paper proposes a space zone model for the calculation of all the airflow parameters based on tracer gas measurements, including flow rates of outdoor air, VAV supply, return space, return and exfiltration. Sulphur hexafluoride (SF6) and carbon dioxide (CO2) are used as tracer gases. After using both SF6 and CO2, the corresponding results provide a reference to justify the acceptability of using CO2 as the tracer gas. The validity of using CO2 has the significance that metabolic carbon dioxide can be used as a means to evaluate real time airflow rates. This approach provides a practical protocol for building managers to evaluate the performance of airside systems. 相似文献
12.
Electrochromic glazing can involve substantial energy consumption in the building sector with their optical properties driven either by various occupant needs or environmental conditions. This paper presents comparison of ten different control strategies developed for such a glazing system in terms of specific energy consumption of a PASSYS test cell where the glazing was installed. The control strategies include scheduled ON–OFF controllers, a PID and advanced fuzzy controllers which were developed using experimental data. We used energy simulation to analyse the annual heating, cooling and lighting demands investigating the influence of each control strategy to the thermal behaviour of the building. 相似文献
13.
Max Sherman 《Indoor air》1995,5(3):215-224
The role of ventilation in the housing stock is to provide fresh air and to dilute internally generated pollutants in order to assure adequate indoor air quality. Blower doors are used to measure the air tightness and air leakage of building envelopes. As existing dwellings in the United States are ventilated primarily through leaks in the building shell (i.e., infiltration) rather than by whole-house mechanical ventilation systems, accurate understanding of the uses of blower-door data is critical Blower doors can be used to answer the following questions:
- ? What is the Construction Quality of the Building Envelope?
- ? Where are the Air Leakage Pathways?
- ? How Tight is the Building?
- ? How Much Ventilation Does the Air Leakage Supply?
- ? How Much Energy Does the Air Leakage Lose?
- ? Is this Building Too Tight?
- ? Is this. Building Too Loose?
- ? When Should Mechanical Ventilation be Considered?
14.
A ventilated window in cold climates can be considered as a passive heat recovery system. This study carried out tests to determine the thermal transmittance of ventilated windows by using the Guarded Hot Box. By testing under defined boundary conditions, the investigation described the heat balance of the ventilated window and clarified the methodology for thermal performance evaluation. Comparison between windows with and without ventilation using the window-room-ventilation heat balance revealed that a ventilated window can potentially contribute to energy savings. In addition, it was found that a significant part of preheating occurred through the window frames, which positively influenced the heat recovery of the window but increased the heat loss. Results also showed that increasing air flow decreased the recovery efficiency until the point when the additional thermal transmittance introduced by the ventilation was higher than the effect of heat recovery. Accordingly, the use of the ventilated windows might be most suitable for window unit with low ventilation rates. The results correlated with theoretical calculations in standards and software. However, the concept of a window thermal transmittance (Uw) value is not applicable for energy performance evaluation of ventilated window and requires deeper analysis. 相似文献
15.
This paper presents the development of an energy efficient window frame made of a glass fibre reinforced polyester (GFRP) material. Three frame proposals were considered. The energy and structural performances of the frames were calculated and compared with wooden and aluminium reference frames. In order to estimate performances, detailed thermal calculations were performed in four successive steps including solar energy and light transmittance in addition to heat loss and supplemented with a simplified structural calculation of frame load capacity and deflection. Based on these calculations, we carried out an analysis of the potential energy savings of the frame. The calculations for a reference office building showed that the heating demand was considerably lower with a window made of GFRP than with the reference frames. It was found that GFRP is suitable for window frames, and windows made of this material are highly competitive in their contribution to the energy savings. A rational product development method was followed, and the process clearly identified the objectives of the investigation and set out the appropriate way to attain them. Using simple rational development methods, a well-defined and effective window was achieved smoothly and quickly, as is illustrated in the case study. 相似文献
16.
It is possible to evaluate the energy demand as well as the parameters related to indoor thermal comfort through building energy simulation tools. Since energy demand for heating and cooling is directly affected by the required level of thermal comfort, the investigation of the mutual relationship between thermal comfort and energy demand (and therefore operating costs) is of the foremost importance both to define the benchmarks for energy service contracts and to calibrate the energy labelling according to European Directive 2002/92/CE. The connection between indoor thermal comfort conditions and energy demand for both heating and cooling has been analyzed in this work with reference to a set of validation tests (office buildings) derived from a European draft standard. Once a range of required acceptable indoor operative temperatures had been fixed in accordance with Fanger's theory (e.g. −0.5 < PMV < −0.5), the effective hourly comfort conditions and the energy consumptions were estimated through dynamic simulations. The same approach was then used to quantify the energy demand when the range of acceptable indoor operative temperatures was fixed in accordance with de Dear's adaptive comfort theory. 相似文献
17.
The purpose of this paper is to investigate, using a validated computational fluid dynamics simulation, the effect of the position of doors on performance of the displacement ventilation system. The results are reported in terms of thermal comfort and indoor air quality. The study focuses on a typical Hong Kong office under local thermal and boundary conditions. It was found that the presence of large heat sources such as from a window can cause the lateral movement of airflow, disrupting the convection effect which the displacement ventilation system relies on. Doors can create this situation when they are opened by changing the thermal boundary conditions of indoor spaces. The designer should be made aware of this possibility and make appropriate design decisions to accommodate for this fact. 相似文献
18.
This paper deals with numerical methods for predicting air flow patterns in large industrial halls. Some major findings of the investigation of the airflow patterns in paper machine hall of Umka Cardboard Mill are presented in the paper. The main reason for the interest in this problem is to find optimal locations for extract air intake connections of the ventilation system connected to the exhausted air waste heat utilization. Previous studies have shown that the amount of heat released from the cardboard machine to the surrounding air in the hall and extracted by the series of ceiling mount axial fans was almost 30% of the total waste heat from the paper machine's drying section. These results have indicated the need for the waste heat utilization, but also for the optimization of the ventilation system. CFD simulation for predicting of air flow patterns was applied. The accuracy of the simulation was evaluated by comparing its results with the results of field measurements. Simulation results served well for qualitative analysis, gave better insight in general air movements inside the hall and indicated the extract air intake locations. By utilizing the waste heat from proposed optimal locations, fuel savings of 5% and reduction of 1140 t/year in CO2 emissions can be achieved. 相似文献
19.
Carbon dioxide (CO2) sensors that provide a visual indication were installed in classrooms during normal school operation. During 2‐week periods, teachers and students were instructed to open the windows in response to the visual CO2 feedback in 1 week and open them, as they would normally do, without visual feedback, in the other week. In the heating season, two pairs of classrooms were monitored, one pair naturally and the other pair mechanically ventilated. In the cooling season, two pairs of naturally ventilated classrooms were monitored, one pair with split cooling in operation and the other pair with no cooling. Classrooms were matched by grade. Providing visual CO2 feedback reduced CO2 levels, as more windows were opened in this condition. This increased energy use for heating and reduced the cooling requirement in summertime. Split cooling reduced the frequency of window opening only when no visual CO2 feedback was present. 相似文献
20.
The effect of elevated airflow on sleep quality was investigated with 18 elderly. Three airflow conditions were set: ceiling fan/30°C/max.0.8 m/s and mean 0.7 m/s, task fan/30°C/max.0.8 m/s and mean 0.6 m/s, and thermally neutral /27°C/0.2 m/s. Sleep quality was evaluated objectively by analysis of electroencephalogram signals that were continuously monitored during the sleeping period. Urinary cortisol concentrations were analyzed to measure the activity of sympathetic nervous system. No significant difference in sleep quality, thermal comfort, or cortisol concentration was found between the ceiling fan and the neutral condition. The duration of total sleep time decreased by 35 minutes, the duration of REM sleep decreased by 15 minutes, and the cortisol concentration in the morning increased by 50 ng/mL in the task fan than the other two conditions. Compared with ceiling fan, less heat load was removed in the task fan condition, possibly due to the lower air speed. This study shows that even small heat load led to reduced sleep quality and overactive sympathetic nervous system of the elderly. By supplying an airflow of 0.8 m/s evenly over the human body, the elderly could maintain sleep quality and thermal comfort at an air temperature that was 3 K higher than the neutral temperature. 相似文献