首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The applicability of the utilisation factor method EN ISO 13790 is studied in modern Finnish buildings in the cold climate of Finland. The heat-demand results of EN ISO 13790 are compared against a validated dynamic simulation tool. It is shown that, with the default values of the numerical parameters of the utilisation factor, EN ISO 13790 gives in Finnish conditions as much as 46% higher or 59% lower heat demand of the building compared to the simulation tool, depending on the type of the building and its thermal inertia. The results of EN ISO 13790 can be calibrated for the residential buildings with the correct selection of the numerical parameters for Finnish conditions. With the new values of the parameters, the results are in good agreement in most cases; however, the maximum difference between the methods remained 29% for highly insulated residential buildings. For office buildings, heat demand was strongly underestimated in all the cases by the monthly method EN ISO 13790 regardless of the values of the parameters. The results of the study indicate that the monthly method EN ISO 13790 with new determined numerical parameters is reasonably applicable for residential buildings, but not applicable for office buildings. Therefore, the other methods of prEN 13790, i.e., simple hourly or detailed simulation methods, should be used for office buildings.  相似文献   

2.
A model for the calculation of solar heat gain through glazed surfaces, to be used in the simplified calculation of thermal energy requirements in air-conditioned buildings, is proposed. The model uses the effective absorption coefficient of the indoor environment to take into account that the entering energy is in part absorbed by the surfaces of the cavity and in part is dispersed outwards, through the same glazed surfaces. The effective absorption coefficient is calculated by means of a correlation, and is made to depend on the average absorption coefficient of the internal opaque surfaces of the environment, on the glazed fraction and on the transmission coefficient of diffuse radiation of the glazed system. This coefficient permits a more accurate evaluation of solar heat gain through glazed surfaces, obtained adding: the direct optical contribution, produced by solar radiation absorbed by the indoor environment, the direct secondary contribution, produced by external solar radiation absorbed by the glazed surfaces, the indirect secondary contribution, produced by the absorption of reflected radiation exiting the indoor environment. The model, validated by means of comparisons with the TRNSYS 16 code, was used for the verification of the monthly solar heat gain calculation procedure of EN ISO 13790:2008.  相似文献   

3.
Cluster analysis of summer and winter discomfort in terms of heat and cold stresses based on 102-year (1901-2002) weather data in China was conducted. Five bioclimate zones were identified. These were compared with the corresponding thermal and solar zoning classifications. Bio-I and Bio-II tended to locate largely within severe cold and cold climates in the north with excellent solar availability (annual clearness index Kt generally exceeding 0.5). Bio-III and Bio-IV covered mostly the hot summer and cold winter and mild climate zones. Despite the relatively low Kt in winter, passive solar heating should be able to meet a significant proportion of the heating requirements. Bio-V covered the hot summer and warmer winter region, where heat stress and hence cooling requirement dominated. Decreasing trends in the zone-average annual cumulative cold stress during the 102-year period were observed for all five zones. There was, however, no distinct pattern for the heat stress and the changes tended to be more subtle. These indicate that climate change during the 20th century affected winter discomfort (especially in colder climates in the north) more than the summer discomfort. This could have significant implications for energy use in buildings if such trends persist.  相似文献   

4.
This paper attempts to formulate Overall Thermal Transfer Value (OTTV) coefficients for Composite, Hot-Dry and Warm-Humid climates, the three main tropical climates in India. Four existing air-conditioned office buildings - two mid-rise and two high-rise were modeled as case studies using eQuest v.3.6, which is a DoE2.2, based building energy simulation tool. Based on the study of building envelope, loads, operation and HVAC system characteristics of these case study buildings, a hypothetical high-rise, 16 storey office building, octagonal in plan was created for parametric studies. 98 types of opaque exterior wall constructions and 93 types of glass constructions were varied sequentially in parametric runs to obtain results for hourly wall conduction, glass conduction and glass radiation heat flow in eight orientations for each of the climate type. These hourly results were processed to obtain annual heat gain intensities for each parametric case for all three modes of heat transfer. Regression analysis was used to obtain the OTTV coefficients - TDeq, DT and SF for the three climates. A new OTTV equation is obtained and presented. The set of coefficients obtained were verified by calculating the OTTV for the four case study buildings, for various parametric runs. The computed OTTV for the four case study buildings exhibits good linear correlation with the annual space cooling plus heating energy use in three climates.  相似文献   

5.
An insulated concrete wall system1 was used on exterior walls of a zero energy house. Its thermal functions were investigated using actual data in comparison to a conventional wood frame system. The internal wall temperature of massive systems changes more slowly than the conventional wall constructions, leading to a more stable indoor temperature. The Energy10 simulated equivalent R-value and DBMS of the mass walls under actual climate conditions are, respectively, 6.98 (m2 °C)/W and 3.39. However, the simulated heating energy use was much lower for the massive walls while the cooling load was a little higher. Further investigation on the heat flux indicates that the heat actually is transferred inside all day and night, which results in a higher cooling energy consumption. A one-dimensional model further verified these analyses, and the calculated results are in good agreement with the actual data. We conclude that the thermal mass wall does have the ability to store heat during the daytime and release it back at night, but in desert climates with high 24-h ambient temperature and intense sunlight, more heat will be stored than can be transferred back outside at night. As a result, an increased cooling energy will be required.  相似文献   

6.
《Energy and Buildings》2006,38(12):1369-1379
The investigation on the effect of painted facades with spectrally selective properties on the energy balance of a building is made by comparing real measured data from an outdoor test of facade samples with data calculated using the ESP-r simulation program.The following factors were investigated: influence of solar radiation, calculated with a solar model, the absorption of direct solar radiation as a function of the angle of incidence, IR radiation exchange and the influence of heat loss caused by convection.During this investigation, it was determined that the influence of solar radiation and especially the heat loss caused by convection are the most dominant influences on the examined energy balance of a building.After adapting the simulation program in order to simulate the data correctly, the influence of selective facades is investigated using an office model as an example. In the case of the location of Freiburg, Germany, two different types of outer walls are investigated and described in this publication: A well-insulated wall with a U-value of 0.42 W/(m2 K) and a poorly insulated wall with 1.95 W/(m2 K).The savings in the heating demand are higher in the case of poorly insulated walls than in well-insulated walls. In contrast to this effect, the cooling demand increases nearly in the same way for both types of walls. The tendency for condensation is also weakened, as is documented in [4].  相似文献   

7.
The use of solar passive strategies such as new solar control coatings on windows for buildings with large glazed areas, have recently become important and helpful tools, mainly because these developments help to reduce heat gains and/or losses through transparent materials, diminishing energy loads, and improving the environment inside buildings. This paper shows an assessment of the thermal performance for an office on top of a building with four different configurations of window glass, and their influence on the indoor conditions. The window glass configurations are: clear glass, glass-film (SnSCuxS solar control coating), double-glass-film, and double clear glass. The simulations were carried out using weather data from Mexico City and Ottawa, which are a good representation of two extreme weather conditions, in order to assess the thermal behaviour inside offices, such as energy loads, costs for air conditioning, and the influence of interior heat transfer coefficient correlations. The results indicate that the glass-film proves to be the less appropriate configuration due to the high temperatures reached on the film surface, which has an impact on the air temperatures inside the office and contributes to increase the energy consumption. In general, the double glass-film configuration results to be adequate for both climates, nevertheless it shows a better performance for Ottawa than Mexico City, where a simple double clear glass would work the same way.  相似文献   

8.
Global increase in energy demand and fossil fuel prices loaded ever-increasing pressure on identifying and implementing new means to utilise clean and efficient energy resources. Due to the environmental benefits, technical and economic possibilities of Solar-Assisted Heat Pump Systems, there has been a growing interest for such hybrid systems with a variety of system configurations for various climates. International Energy Agency Task 44 of the Solar Heating and Cooling Programme has recently started working on finding methods to most effectively use solar heat pump systems for residential use. In the present study, a novel solar thermal roof collector was developed by primarily exploiting components and techniques widely available on the market and coupled with a commercial heat pump unit. The proposed indirect series Solar-assisted Heat Pump system was experimentally tested and system performance was investigated. Yet, the analysis based on indoor and outdoor testing predominantly focuses on the solar thermal roof collector. A detailed thermal model was developed to describe the system operation. Also, a computer model was set up by using Engineering Equation Solver to carry out the numerical computations of the governing equations. Analyses show that the difference in water temperature could reach up to 18°C while maximum thermal efficiency found to be 26%. Data processing of the series covering the test period represents that Coefficient Performance of the heat pump (COPHP) and overall system (COPSYS) averages were attained as COPHP?=?3.01 and COPSYS?=?2.29, respectively. An economic analysis points a minimum payback period of about three years for the system.  相似文献   

9.
Open spaces in tropical climates are highly exposed to solar radiation. These conditions will influence the outdoor energy budget, leading to an increased heat island effect and reduced human thermal comfort. Trees, however, can influence the microclimate through radiation control that indirectly reduces direct radiation uptake and glare by humans and buildings. This condition affects building energy budget and human thermal comfort. This study compares the effectiveness of Mesua ferrea L. and Hura crepitans L. in shade creation and radiation modification in improving human thermal comfort. The study employed two methods: (i) a field measurement procedure and (ii) a computer-based sun-shading analysis using ECOTECT. The results from this study indicate that both M. ferrea L. and H. crepitans L. contribute significantly to direct thermal radiation modification below their canopies. The average solar filtration under the tree canopy for M. ferrea L. was 93%, with 5% canopy transmissivity, 6.1% of leaf area index (LAI) and 35% of shade area. For H. crepitans L. the average heat filtration under the canopy was 79%, with transmissivity of 22%, LAI of 1.5 and 52% of shade area. Thus, the study found that M. ferrea L. was more significant as a thermal radiation filter than H. crepitans L., due to the former's denser foliage cover and branching habit. This significant filtration capability contributes to reduce more terrestrial radiation, cooling the ground surfaces by promoting more latent heat, reducing air temperature by promoting more evapotranspiration and effectively improves outdoor thermal comfort in tropical open spaces.  相似文献   

10.
A system of algorithms is developed for calculation of the frequency- and time-domain responses of the heat transfer equations for a dwelling. Conduction through the walls, considered as multi-layered slabs, as well as convection to the inside air, infiltration, solar radiation deposition in the space, and radiative interaction between the walls is included in the calculation. The first part of this system of algorithms provides a means whereby a set of frequency responses of the dwelling as a whole may be calculated, one frequency response for each input-output pair, considering internal temperature or heat flow as the output, and the sol-air temperatures on each surface, infiltration, and the solar heat gain to the interior as inputs. The second part of the system of algorithms is then used to obtain from these frequency responses sets of digital transfer function coefficients of the type presented in the ASHRAE Handbook of Fundamentals, but relating the total dwelling heat gain, rather than that for a single wall, with specified internal temperatures, or internal temperature with specified heat gains, to the sol-air temperatures on each surface, infiltration, and solar heat deposited in the interior. The method is shown to produce rapidly calculatable, accurate results in the time-domain. Further the plots of the frequency responses themselves are expected to prove useful in seeking optimal thermal designs.  相似文献   

11.
A Window Energy Rating System (WERS) provides a simple, approximate method to compare the energy performance of the various windows and to determine the different potential savings for the various weather conditions. The main aim of this paper is to obtain a WERS for two climatic zones in Spain.For this purpose, the heating loads and energy savings of a residential building with different types of windows were obtained by three ways. Firstly, the energy through the window was evaluated considering only the climatic conditions. Secondly, the study was performed taking into account the energy useful for the heating system considering the climate and the type of building. Finally, the different cases were simulated using TRNSYS16 and WINDOW5. This study was performed for different European climates.The WERS proposed here is based on the second method. It takes into account the U factor of the window, U factor of the frame, absortivity of the frame, solar heat gain of the glazing and infiltration.  相似文献   

12.
《Energy and Buildings》1995,22(1):59-66
The most recent version of the DOE-2 building energy simulation program, DOE-2.1E, provides for more detailed modeling of the thermal and optical properties of windows. The window calculations account for the temperature effects on U-value, and update the incident angle correlations for the solar heat gain properties and visible transmittance. Initial studies show up to a 35% difference in calculating peak solar heat gain between the detailed approach and a constant shading-coefficient approach. The modeling approach is adapted from Lawrence Berkeley Laboratory's WINDOW 4 computer program, which is used in the National Fenestration Rating Council (NFRC) U-value rating procedure 100-91. This gives DOE-2.1E the capability to assess the annual and peak energy performance of windows consistent with the NFRC procedure. The program has an extensive window library and algorithms for simulating switchable glazings. The program also accounts for the influence of framing elements on the heat transfer and solar heat gain through the window.  相似文献   

13.
《Building and Environment》2001,36(2):199-217
A procedure is described to estimate comfort and other temperatures in a simple massive room as it responds to ambient temperature, solar gain through walls and a window, and internal heat gains, with the possibility of a variable ventilation rate. Alternatively, it evaluates the heating or cooling load needed for a specified value of comfort temperature. The exchange of heat within the room is expressed using the rad-air model. Wall heat flows are handled using the wall transfer coefficients, bk, ck and dk which process meteorological and other hourly data. The procedure is illustrated using some hourly data in the CIBSE Guide but is intended for eventual use with hourly weather records so as to identify, for example, periods of possible overheating and to estimate seasonal energy needs.  相似文献   

14.
Curtain walls are believed to be “energy sinks” because of their relatively low thermal performance; however, the integration of energy generating technologies such as photovoltaic (PV) panels may enable converting these systems to “energy positive” curtain walls. A methodology using the Analysis of Variance (ANOVA) approach is developed and implemented to identify configurations of energy positive curtain walls by accounting for the complex interacting effect of facade design parameters. The “energy positive” curtain wall in this paper is defined as the energy generated by the curtain wall facade on an annual basis exceeds the energy consumption of a perimeter zone office enclosed by this curtain wall facade. Ten design parameters are studied, including glazing U-value, solar heat gain coefficient (SHGC), and visible transmittance (T v); U-value of the spandrel panel; U-value of the mullion; window wall ratio (WWR); infiltration rate; depth and inclination of overhang; and efficiency of PV modules. The significance of individual design parameters on the energy performance is ranked for four cardinal orientations based on the total sensitivity index. The WWR, U-glazing, and infiltration rate are the three most significant parameters influencing the total annual energy consumption of the office unit simulated, while the WWR, PV efficiency, and U-glazing are the most significant design parameters for achieving energy positive curtain walls. The methodology presented in this paper helps facilitate the design process to resolve the issues with conflicting effects of design parameters.  相似文献   

15.
《Energy and Buildings》2005,37(5):529-544
The application of bioclimatic principles is a critical factor in reducing energy consumption and CO2 emissions of the building sector. This paper develops a regression model of energy efficiency as a function of environmental conditions, building characteristics and passive solar technologies. A sample of 77 bioclimatic buildings (including 45 houses) was collected, covering Greece, other Mediterranean areas and the rest of Europe. Average energy efficiency varied from 19.6 to 100% with an average of about 68%. Environmental conditions included latitude, altitude, ambient temperature, degree days and sun hours; building characteristics consisted in building area and volume. Passive solar technologies included (among others) solar water heaters, shading, natural ventilation, greenhouses and thermal storage walls. Degree days and a dummy variable indicating location in the Mediterranean area were the strongest predictors of energy efficiency while taller and leaner buildings tended to be more energy efficient. Surprisingly, many passive technologies did not appear to make a difference on energy efficiency while thermal storage walls in fact seemed to decrease energy efficiency. The model developed may be of use to architects, engineers and policy makers. Suggestions for further research include obtaining more building information, investigating the effect of passive solar technologies and gathering information on the usage of building.  相似文献   

16.
17.
For a greenhouse thermal analysis, it is essential to know the energy partition and the amount of solar and thermal radiation converted into sensible and latent heat in the greenhouse. Factors that are frequently needed are: efficiency of utilization of incident solar radiation (π), and sensible and latent heat factors (η and δ). Previous studies considered these factors as constant parameters. However, they depend on the environmental conditions inside and outside the greenhouse, plants and soil characteristics, and structure, orientation and location of the greenhouse. Moreover, these factors have not yet been evaluated under the arid climatic conditions of the Arabian Peninsula.In this study, simple energy balance equations were applied to investigate π, η and δ; energy partitioning among the greenhouse components; and conversion of solar and thermal radiation into sensible and latent heat. For this study, we used an evaporatively cooled, planted greenhouse with a floor area of 48 m2. The parameters required for the analysis were measured on a sunny, hot summer day. The results showed that value of π was almost constant (≅0.75); whereas the values of η and δ strongly depended on the net radiation over the canopy (Rna); and could be represented by exponential decay functions of Rna.At a plant density corresponding to a leaf area index (LAI) of 3 and an integrated incident solar energy of 27.7 MJ m−2 d−1, the solar and thermal radiation utilized by the greenhouse components were 20.7 MJ m−2 d−1 and 3.74 MJ m−2 d−1, respectively. About 71% of the utilized radiation was converted to sensible heat and 29% was converted to latent heat absorbed by the inside air. Contributions of the floor, cover and plant surfaces on the sensible heat of the inside air were 38.6%, 48.2% and 13.2%, respectively.  相似文献   

18.
The general methodology for estimating energy consumption in buildings, in accordance with the EN ISO 13790, needs the use of constants that are valid for each set of climatic conditions. Furthermore, there are variables other than building structure and weather conditions that have an influence. In this sense, recent research works showed the real effect of permeable coverings on indoor environmental conditions, by controlling indoor moisture. The effect of the associated heat and mass transfer on heating or cooling energy consumption is evident during the initial hours of building occupation. In the present paper, the general methodology of building heat demand calculation is modified to consider different levels of permeability of internal coverings, in order to obtain a more accurate model. Results showed that permeable coverings are related with a higher building utilisation factor, and that the value of this factor is higher in summer than in winter season. Consequently, despite the fact that the sensibility of energy consumption to internal coverings may be lower than to building envelope, new constants are proposed to express a relationship between building permeability and energy consumption, in order to apply the certification equation.  相似文献   

19.
Solar cooling is emerging as one of the most interesting applications in the harnessing of solar energy for alternative uses. Current devices can effectively control the climates of small buildings while addressing the issues associated with the excessive thermal energy captured during the summer months. This article presents an exergy analysis of buildings with solar thermal systems used for Domestic Hot Water (DHW) production and heating and cooling support. The cooling system analyzed is a LiCl–H2O thermally driven heat pump with integral energy storage that uses outdoor swimming pools as heat sink. All subsystems were integrated into the model and considered as a single energy system, and data from installations in three different locations were used. The influences of the heating and cooling demand ratios and the dead state and house temperatures were analyzed. Further, the use of dissipated energy was analyzed, demonstrating that the proposed method facilitates the realistic study of these systems and provides useful analytical tools for improving the overall exergy performance. The energy delivered for heating, cooling and DHW production strongly influences global performance, suggesting that the appropriate sizing of each system is a priority.  相似文献   

20.
In order to identify buildings that have energy saving potential there is a need for further development of robust methods for evaluation of energy performance as well as reliable key energy indicators. To be able to evaluate a large database of buildings, the evaluation has to be founded on available data, since an in-depth analysis of each building would require large measurement efforts in terms of both parameters and time. In practice, data are usually available for consumed energy, water, and so on, namely consumption that the tenants or property holder has to pay for. In order to evaluate the energy saving potential and energy management, interesting key energy indicators are the total heat loss coefficient Ktot (W/K), the indoor temperature (Ti), and the utilisation of the available heat (solar radiation and electricity primarily used for purposes other than heating). The total heat loss coefficient, Ktot, is a measure of the heat lost through the building's envelope, whereas Ti and the gained energy reflect the user's behaviour and efficiency of the control system.In this study, a linear regression approach (energy signature) has been used to analyse data for 2003-2006 for nine fairly new multifamily buildings located in the Stockholm area, Sweden. The buildings are heated by district heating and the electricity used is for household equipment and the buildings’ technical systems. The data consist of monthly energy used for heating and outdoor temperature together with annual water use, and for some buildings data for household electricity are also available. For domestic hot water and electricity, monthly distributions have been assumed based on data from previous studies and energy companies. The impact on Ktot and Ti of the time period and assumed values for the utilised energy are investigated.The results show that the obtained value of Ktot is rather insensitive to the time period and utilised energy if the analysis is limited to October-March, the period of the year when the solar radiation in Sweden yields a minor contribution to heating. The results for the total heat loss coefficient were also compared to the calculations performed in the design stage; it was found that Ktot was on average 20% larger and that the contribution to heating from solar radiation was substantially lower than predicted. For the indoor temperature, however, the utilised energy had a large impact.With access to an estimate of Ktot and Ti, an improved evaluation of the energy performance may be achieved in the Swedish real estate market. At present the measure commonly used, despite the fact that monthly data is available, is the annual use of energy for space heating per square metre of area to let.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号