首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we analyze the impact of ventilation heat recovery (VHR) on the operation primary energy use in residential buildings. We calculate the operation primary energy use of a case-study apartment building built to conventional and passive house standard, both with and without VHR, and using different end-use heating systems including electric resistance heating, bedrock heat pump and district heating based on combined heat and power (CHP) production. VHR increases the electrical energy used for ventilation and reduces the heat energy used for space heating. Significantly greater primary energy savings is achieved when VHR is used in resistance heated buildings than in district heated buildings. For district heated buildings the primary energy savings are small. VHR systems can give substantial final energy reduction, but the primary energy benefit depends strongly on the type of heat supply system, and also on the amount of electricity used for VHR and the airtightness of buildings. This study shows the importance of considering the interactions between heat supply systems and VHR systems to reduce primary energy use in buildings.  相似文献   

2.
In several housing development projects in Norway the requirements related to the mandatory connection to district heating plants have shown to be a barrier for building low-energy residential buildings. The developers have considered the costs related to both low-energy measures and a space heating system that can utilize district heat to be too high to give the project acceptable profitability. In these projects the developers wanted to use a cheaper electric space heating system. Based on models representative for the range of the Norwegian district heating plants, calculations show that the CO2 emissions related to heating in residential buildings with an energy standard in accordance with the new building regulations and that are connected to the district heating grid, are lower than for similar buildings with a low-energy standard and with heating based on electricity. However, in a long term perspective the differences are marginal when considering the national annual CO2 emissions. Similarly, increased peak power demand due to electricity-based heating may also be regarded as marginal when compared to the present maximum peak power capacity in Norway.  相似文献   

3.
In this study we analyze the life cycle primary energy use of a wood-frame apartment building designed to meet the current Swedish building code, the Swedish building code of 1994 or the passive house standard, and heated with district heat or electric resistance heating. The analysis includes the primary energy use during the production, operation and end-of-life phases. We find that an electric heated building built to the current building code has greater life cycle primary energy use relative to a district heated building, although the standard for electric heating is more stringent. Also, the primary energy use for an electric heated building constructed to meet the passive house standard is substantially higher than for a district heated building built to the Swedish building code of 1994. The primary energy for material production constitutes 5% of the primary energy for production and space heating and ventilation of an electric heated building built to meet the 1994 code. The share of production energy increases as the energy-efficiency standard of the building improves and when efficient energy supply is used, and reaches 30% for a district heated passive house. This study shows the significance of a life cycle primary energy perspective and the choice of heating system in reducing energy use in the built environment.  相似文献   

4.
In this study the life cycle primary energy use and carbon dioxide (CO2) emission of an eight-storey wood-framed apartment building are analyzed. All life cycle phases are included, including acquisition and processing of materials, on-site construction, building operation, demolition and materials disposal. The calculated primary energy use includes the entire energy system chains, and carbon flows are tracked including fossil fuel emissions, process emissions, carbon stocks in building materials, and avoided fossil emissions due to biofuel substitution. The results show that building operation uses the largest share of life cycle energy use, becoming increasingly dominant as the life span of the building increases. The type of heating system strongly influences the primary energy use and CO2 emission; a biomass-based system with cogeneration of district heat and electricity achieves low primary energy use and very low CO2 emissions. Using biomass residues from the wood products chain to substitute for fossil fuels significantly reduces net CO2 emission. Excluding household tap water and electricity, a negative life cycle net CO2 emission can be achieved due to the wood-based construction materials and biomass-based energy supply system. This study shows the importance of using a life cycle perspective when evaluating primary energy and climatic impacts of buildings.  相似文献   

5.
The existing building stock in European countries accounts for over 40% of final energy consumption in the European Union (EU) member states, of which residential use represents 63% of total energy consumption in the buildings sector. Consequently, an increase of building energy performance can constitute an important instrument in the efforts to alleviate the EU energy import dependency (currently at about 48%) and comply with the Kyoto Protocol to reduce carbon dioxide emissions. This is also in accordance to the European Directive (EPBD 2002/91/EC) on the energy performance of buildings, which is currently under consideration in all EU member states. This paper presents an overview of the EU residential building stock and focuses on the Hellenic buildings. It elaborates the methodology used to determine the priorities for energy conservation measures (ECMs) in Hellenic residential buildings to reduce the environmental impact from CO2 emissions, through the implementation of a realistic and effective national action plan. A major obstacle that had to overcome was the need to make suitable assumptions for missing detailed primary data. Accordingly, a qualitative and quantitative assessment of scattered national data resulted to a realistic assessment of the existing residential building stock and energy consumption. This is the first time that this kind of aggregate data is presented on a national level. Different energy conservation scenarios and their impact on the reduction of CO2 emissions were evaluated. Accordingly, the most effective ECMs are the insulation of external walls (33–60% energy savings), weather proofing of openings (16–21%), the installation of double-glazed windows (14–20%), the regular maintenance of central heating boilers (10–12%), and the installation of solar collectors for sanitary hot water production (50–80%).  相似文献   

6.
The building sector is responsible for a great share of the final energy demand and national CO2 emissions in countries like Germany. Nowadays, low quality thermal energy demands in buildings are mainly satisfied with high-quality sources (e.g. natural gas fired in condensing boilers). Exergy analysis, pursuing a matching in the quality level of energy supplied and demanded, pinpoints the great necessity of substituting high-quality fossil fuels by other low quality energy flows, such as waste heat. In this paper a small district heating system in Kassel (Germany) is taken as a case study. Results from preliminary steady-state and dynamic energy and exergy analysis of the system are presented and strategies for improving the performance of waste-heat based district heating systems are derived. Results show that lowering supply temperatures from 95 to 57.7 °C increases the final exergy efficiency of the systems from 32% to 39.3%. Similarly, reducing return temperatures to the district heating network from 40.8 to 37.7 °C increases the exergy performance in 3.7%. In turn, the energy performance of all systems studied is nearly the same. This paper shows clearly the added value of exergy analysis for characterising and improving the performance of district heating systems.  相似文献   

7.
结合《民用建筑节能设计标准(采暖居住建筑部分)》(JGJ26-95)与《公共建筑节能设计标准》(GB50189-2005)两部设计标准的部分条文,探讨集体宿舍、招待所、旅馆、托幼等类型的公共类居住建筑的节能设计。指出了两部标准在适用范围、窗墙比、传热系数、采暖制式等多方面的规定有所不同,结合实际工程分析了该类建筑热工设计执行哪部标准更为合适。并对该类建筑在供暖方式、采暖制式、散热器采用等方面谈了个人设计体会。  相似文献   

8.
According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting systems. This energy declaration must refer to the primary energy or CO2 emissions.The European Organization for Standardization (CEN) has prepared a series of standards for energy performance calculations for buildings and systems. This paper presents related standards for heating systems. The relevant CEN-standards are presented and a sample calculation of energy performance is made for a small single family house, an office building and an industrial building in three different geographical locations: Stockholm, Brussels, and Venice.The additional heat losses from heating systems can be 10-20% of the building energy demand. The additional loss depends on the type of heat emitter, type of control, pump and boiler.  相似文献   

9.
This paper presents a detailed meta-analysis of end and primary energy use for heating, cooling and ventilation of 11 low-energy non-residential buildings and one residential building in Germany that belong to the EnOB research program launched by the German Federal Ministry for Economy. In particular, the analysis emphasizes the substantial impact of auxiliary energy use on the efficiency of heating and cooling performance. The investigated buildings employ environmental energy sources and sinks - such as the ground, ground water, rainwater and the ambient air - in combination with thermo-active building systems. These concepts are promising approaches for slashing the primary energy use of buildings without violating occupant thermal comfort. A limited primary energy use of about 100 kWhprim/(m2neta) as a target for the complete building service technology (HVAC and lighting) was postulated for all buildings presented. With respect to this premise, a comprehensive long-term monitoring in high time resolution was carried out over the course of two to five years, with an accompanying commissioning of the building performance. Measurements include the energy use for heating, cooling, and ventilation, as well as the auxiliary equipment, the performance of the environmental heat source and sink, and local climatic site conditions.  相似文献   

10.
The importance of developing a method to bridge the gap between the current increasing trend of CO2 emission from the commercial sector and the reduced emission level for ensuring long-term sustainability has increased. Various concepts exist for managing the energy use and CO2 emission. These concepts can be categorized into advancement in technologies, dissemination of energy saving measures in buildings, optimization of local energy generation and distribution systems, spatial building stock pattern management, and improvement in CO2 emission factor of the grid electricity. In this paper, we propose a modeling approach for energy use in the commercial sector in order to evaluate the options involved in the abovementioned energy management concepts in an integrated manner. In this modeling approach, a district is dealt with as a basic unit. Districts are first classified into several categories according to the spatial building stock pattern, or urban form. The end-use energy consumption per unit floor area is then calculated for each district category using a simulation of energy use in buildings in a representative district; this is used for quantifying the total end-use energy consumption at the municipal level. We carried out a case study in order to demonstrate the simulation capabilities and features of the suggested modeling approach in contrast with the conventional modeling approaches. In this case study, certain scenarios of CO2 abatement integrating the energy management concepts are applied in the commercial sector of Osaka city, Japan, in order to investigate alternative avenues toward which policy efforts must be directed.  相似文献   

11.
A literature survey on buildings’ life cycle energy use was performed, resulting in a total of 60 cases from nine countries. The cases included both residential and non-residential units. Despite climate and other background differences, the study revealed a linear relation between operating and total energy valid through all the cases. Case studies on buildings built according to different design criteria, and at parity of all other conditions, showed that design of low-energy buildings induces both a net benefit in total life cycle energy demand and an increase in the embodied energy. A solar house proved to be more energy efficient than an equivalent house built with commitment to use “green” materials. Also, the same solar house decreased life cycle energy demand by a factor of two with respect to an equivalent conventional version, when operating energy was expressed as end-use energy and the lifetime assumed to be 50 years. A passive house proved to be more energy efficient than an equivalent self-sufficient solar house. Also, the same passive house decreased life cycle energy demand by a factor of three – expected to rise to four in a new version – with respect to an equivalent conventional version, when operating energy was expressed as primary energy and the lifetime assumed to be 80 years.  相似文献   

12.
The growing worldwide demand for less polluting forms of energy has led to a renewed interest in the use of micro combined heat and power (CHP) technologies in the residential sector. The operation of micro CHP system results in simultaneous production of heat and power in a single household based on small energy conversion units. The heat produced may be used for space and water heating and possibly for cooling load if combined with an absorption chiller, the electricity is used within the house.In this paper, two typical micro CHP alternatives, namely, gas engine and fuel cell for residential buildings, are analyzed. For each facility, two different operating modes including minimum-cost operation and minimum-emission operation are taken into consideration by employing a plan and evaluation model for residential micro CHP systems. The analysis results show that the fuel cell system is recognized as a better option for the examined residential building from both economic and environmental points of view. With the operation considering optimal economic benefits, annual energy cost is reduced by about 26%. On the other hand, while maximizing the environmental merits, annual CO2 emissions are reduced by about 9%.  相似文献   

13.
Energy-efficient renovation had been accepted widely as the best solution for aging residential buildings. In order to guide such real projects in China and maximize the benefits in energy, environmental and economic fields from these activities, this article developed a methodology to assist decision-makers to design energy-efficient renovation plan in the early stage of design phase, and used a case study to demonstrate how to apply it. Following it, a suitable energy-efficient renovation plan, integrating all effective and available energy-saving measures, could be put forward for the subject building, and its effects on reduction of energy consumption, CO2 emission and cost be evaluated accurately. The results showed that from the viewpoint of reducing energy consumption and CO2 emission, energy-efficient renovation was worth being implemented to upgrade the existing residential buildings in China, but from the economic view, governments should provide certain subsidy for such real projects and increase electricity price.  相似文献   

14.
Electrically driven heat pumps achieve good efficiencies for space heating. If heat pumps are driven directly by a combustion engine instead of an electric motor, losses attributed to the production and transport of electricity are eliminated. Additionally, the use of the combustion engine's heat leads to a reduced temperature difference across the heat pump. This article presents annual efficiencies of these systems and compares internal combustion engine and electrically driven heat pumps in terms of primary energy consumption and CO2 emissions. Because heat pump performance depends strongly on the heating circuit's flow temperature level, the comparison is performed for air-to-water and geothermal heat pump systems in two cases of maximum flow temperatures (40 °C and 60 °C). These temperature levels represent typical modern buildings with large heating surfaces and older buildings with high-temperature radiators, respectively. In addition to the different heat pump setups, conventional space heating systems are included in the comparison. The calculations show that natural gas-driven heat pumps achieve about the same efficiency and CO2 emissions as electrically driven heat pumps powered with electricity from the most modern natural gas-fired combined cycle power plants. The efficiency of such systems is about twice that of conventional boiler technologies.  相似文献   

15.
In this study we explore the effects of end-use energy efficiency measures on different district heat production systems with combined heat and power (CHP) plants for base load production and heat-only boilers for peak and medium load productions. We model four minimum cost district heat production systems based on four environmental taxation scenarios, plus a reference district heat system used in Östersund, Sweden. We analyze the primary energy use and the cost of district heat production for each system. We then analyze the primary energy implications of end-use energy efficiency measures applied to a case-study apartment building, taking into account the reduced district heat demand, reduced cogenerated electricity and increased electricity use due to ventilation heat recovery. We find that district heat production cost in optimally-designed production systems is not sensitive to environmental taxation. The primary energy savings of end-use energy efficiency measures depend on the characteristics of the district heat production system and the type of end-use energy efficiency measures. Energy efficiency measures that reduce more of peak load than base load production give higher primary energy savings, because the primary energy efficiency is higher for CHP plants than for boilers. This study shows the importance of analyzing both the demand and supply sides as well as their interaction in order to minimize the primary energy use of district heated buildings.  相似文献   

16.
Study on the efficiency of thermal refurbishment of residential buildings in Vienna. In the framework of the Kyoto Protocol Austria has committed to reduce its greenhouse gas emissions until 2008/2012 by 13% on the base of 1990. Therefore the Federal Government as well as the provincial governments have implemented programs for the protection of climate including several measures to reduce the emission of hazardous greenhouse gases mainly CO2. Regarding the enormous potential reduction activities were mainly focused on residential buildings. The refurbishment of the building envelope reduces the heating costs as well as the carbon dioxide emissions and improves the indoor climate. Several investigations were taken to check the utility of thermal refurbishment under structural and physical conditions. Plenty of data available in the line of several expertises of existing residential buildings were analysed and completed by additional investigations. The economic efficiency of thermal insulations is pointed out as well as the period of repayment or the influence of the thickness of insulation on the heating energy demand or possible CO2‐reductions.  相似文献   

17.
This paper introduces a method and application for the assessment of environmental burdens due to the construction and operation of a residential energy supply system. The methodology encompasses energy and environmental impact analyses with sensitivity analysis. Here, natural resource consumption is assessed through material input factors. Global warming and acidification potentials are estimated by way of CO2− and SO2− equivalents. A simple optimization scheme is established to capture uncertainties related to preferential treatment between natural resource categories. A computational study on the energy supply of a group of low-energy single-family houses in Finland is presented. Specifically, the potential of micro-cogeneration is evaluated with respect to traditional options based on grid electricity, district heat and natural gas. The energy analysis suggests that the operation of a heating system causes a major part of environmental burdens and that no more than 1000 W on-site generated electrical power per one household would result in minimum thermal losses and thus environmental burdens. On the basis of environmental impact analysis, the use of state-of-the-art micro-cogeneration may decrease the annual use of abiotic resources and water to some extent, but for practical applications, further improvement of system efficiency is still required.  相似文献   

18.
Europe with more than 600 millions of square meters of air-conditioned office buildings offers an opportunity to save energy and reduce CO2 emissions by reconverting chillers into reversible heat pumps in office buildings. One of the questions asked in the framework of the IEA ECBCS Annex 48 is how to assess the energy saving potential and how to identify the most interesting building cases. The methodology proposed here is based on the simulation of office buildings representative of the building stock. The energy consumption has been simulated for different office building types in five European climatic zones on the one hand with boilers for heating and chillers for cooling, and on the other hand with reversible chillers plus back-up boilers. The results of the simulations in terms of energy consumption allow us to assess the primary energy savings and CO2 emission reduction in Europe by reconverting chillers into reversible heat pumps. The results show that the potential of annual primary energy savings and annual CO2 emission reduction are about 8 TWhPE and 3 millions of tons of CO2 in Europe-15. Even if the temperature level in terminal units can be solved using the cooling coil instead of the heating coil, a back up boiler turns generally out to be required for the coldest days in the year or when simultaneous heating and cooling demands occur.  相似文献   

19.
This paper compares apartments in two residential blocks in Vienna; one passive and the other one low-energy. These blocks were constructed simultaneously in the same location and with comparable building construction features and floor plans. The main difference between the two blocks (other than the higher thermal insulation level in the passive building) lies in the ventilation system: passive buildings deploy controlled ventilation, whereas the low-energy buildings rely mostly on user-operated natural (window) ventilation. We measured indoor environmental conditions (indoor air temperature, relative humidity, and CO2 concentration) in two units of each block over a period of five months. Additionally, the buildings were compared in view of operation and embodied energy use, CO2 emissions, and construction costs.  相似文献   

20.
This paper presents two case studies of performance improvement alternatives. The first one is the 52.5 MWe cogeneration plant at the Suvarnabhumi Airport, and the second is the 9.9 MWe cogeneration plant of the government office building complex. Both plants are located in Bangkok. Performance improvements assume changing system design and operational plans during on-peak and off-peak periods with applying chilled water storage for more flexible operation. Such analysis gives opportunity for improvement of plant efficiency, primary energy saving, emission reduction and economical benefits. In case study 1, the selection of new prime mover results in overall efficiency improvement from 48% to 61%, 24% increase of primary energy saving, and 27% improvement of CO2 emission reduction. Significant amount of primary energy is saved 1451 TJ/a and CO2 emission reduction is 129,271 tCO2/a. The profit is increased to 24.80 Million US$/a and the payback period is 4.77 years. In case study 2, the application of chilled water storage leads to maximum profit of 2.63 Million US$/a. The results show that the selection of plant components should be made very carefully in the design stage, as well as that permanent control and optimization of plant operation in the exploitation phase is essential. Economic aspects of cogeneration plants are more sensitive to changeable input parameters than classical separate heat and power generation since cogeneration plants are more complex in the aspects of process configuration and products costs/values (electricity, steam, hot water, and chilled water). Having in mind the future development of the natural gas distribution network in Thailand, it can be estimated that the potential of power generation in public buildings is around 1.3 GWe. Comparing the Thailand total primary energy supply for commercial buildings, it means reduction of about 9.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号