共查询到3条相似文献,搜索用时 0 毫秒
1.
With their thermal conductivity down to 10 mW/m K, gas-filled panels (GFPs) are regarded as possible high performance thermal insulating solutions for building applications. However, thermal conductivities of respectively 46 and 40 mW/m K have so far been achieved for prototype air-filled and argon-filled panels, values slightly higher than currently traditional building insulation materials. Compared to other high performance thermal insulation materials and solutions, e.g. vacuum insulation panels (VIPs), the future of GFPs may therefore be questioned. Nevertheless, the application of a low-conductive gas and reflective barriers may have a potential in the development of new high performance thermal insulation materials. Within this work, a state-of-the-art review is given on the knowledge of GFPs for building applications today. 相似文献
2.
Phase change materials (PCMs) are regarded as a possible solution for reducing the energy consumption of buildings. By storing and releasing heat within a certain temperature range, it raises the building inertia and stabilizes indoor climate. Within this work, a state-of-the-art review is given on the knowledge of PCMs today for building applications. 相似文献
3.
This article deals with both an experimental study and a numerical model of the thermal behaviour of a building whose roof is equipped with photovoltaic panels (PV panels). The aim of this study is to show the impact of the PV panels in terms of level of insulation or solar protection for the building. Contrary to existing models, the one presented here will allow us to determine both the temperature field of the building and the electric production of the PV array. Moreover, an experimental study has been conducted in La Reunion Island, where the climate is tropical and humid, with a strong solar radiation. In such conditions, it is important to minimise the thermal load through the roof of the building. The thermal model is integrated in a building simulation code and is able to predict the thermal impact of PV panels installed on buildings in several configurations and also their production of electricity. Basically, the PV panel is considered as a complex wall within which coupled heat transfer occurs. Conduction, convection and radiation heat transfer equations are solved simultaneously to simulate the global thermal behaviour of the building envelope including the PV panels; this is an approach we call ‘integrated modelling’ of PV panels. The experimental study is used to give elements of validation for the numerical model and a sensitivity analysis has been run to put in evidence the governing parameters. It has been shown that the radiative properties of the PV panel have a great impact on the temperature field of the tested building and the determination of these parameters has to be taken with care. 相似文献