首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PMV model predicts thermal sensation well in HVAC buildings while it predicts a warmer thermal sensation than the occupants actually feel in naturally ventilated buildings. For using PMV model to predict thermal sensation well in a naturally ventilated building, the extended PMV model (PMVe) including an expectancy factor (e) and PMV was proposed by Fanger. Besides, calculations of PMV are too complex to be applied in practice. To obtain simple and applicable correlations, taking Qujing of Yunnan province, China, as example, a dry season (6-month) field measurement was conducted in a naturally ventilated residential room. Based on the collected data, PMVe values were calculated by using Newton’s iterative method. It is shown that the PMVe values approximately vary from −1.3 to 0.20 and the indoor thermal environment is somewhat discomfortable on some cloudy or rainy days. Parameters relationships and indoor air temperature gradients (vertical and horizontal) were also studied by using linear regression technique and quadratic polynomial fit technique. Numerous correlations with high relativities have been developed. It is convenient to use these results to evaluate the indoor thermal environment in naturally ventilated buildings under similar climatic conditions.  相似文献   

2.
This paper reports a full-scale experimental campaign and a computational fluid dynamics (CFD) study of a radiant cooling ceiling installed in a test room, under controlled conditions. This research aims to use the results obtained from the two studies to analyze the indoor thermal comfort using the predicted mean vote (PMV). During the whole experimental tests the indoor humidity was kept at a level where the condensation risk was minimized and no condensation was detected on the chilled surface of the ceiling. Detailed experimental measurements on the air temperature distribution, surface temperature and globe temperature were realized for different cases where the cooling ceiling temperature varied from 16.9 to 18.9 °C. The boundary conditions necessary for the CFD study were obtained from the experimental data measurements. The results of the simulations were first validated with the data from the experiments and then the air velocity fields were investigated. It was found that in the ankle/feet zone the air velocity could pass 0.2 m/s but for the rest of the zones it took values less than 0.1 m/s. The obtained experimental results for different chilled ceiling temperatures showed that with a cooling ceiling the vertical temperature gradient is less than 1 °C/m, which corresponds to the standard recommendations. A comparison between globe temperature and the indoor air temperature showed a maximum difference of 0.8 °C being noticed. This paper also presents the radiosity method that was used to calculate the mean radiant temperature for different positions along different axes. The method was based on the calculation of the view factors and on the surface temperatures obtained from the experiments. PMV plots showed that the thermal comfort is achieved and is uniformly distributed within the test room.  相似文献   

3.
The effect of vertical air temperature gradient on overall and local thermal comfort at different overall thermal sensations and room air temperatures (at 0.6 m height) was investigated in a room served by displacement ventilation system. Sixty tropically acclimatized subjects performed sedentary office work for a period of 3 h during each session of the experiment. Nominal vertical air temperature gradients between 0.1 and 1.1 m heights were 1, 3 and 5 K/m while nominal room air temperatures at 0.6 m height were 20, 23 and 26 °C. Air velocity in the space near the subjects was kept at below 0.2 m/s. Relative humidity at 0.6 m height was maintained at 50%. It was found that temperature gradient had different influences on thermal comfort at different overall thermal sensations. At overall thermal sensation close to neutral, only when room air temperature was substantially low, such as 20 °C, percentage dissatisfied of overall body increased with the increase of temperature gradient. At overall cold and slightly warm sensations, percentage dissatisfied of overall body was non-significantly affected by temperature gradient. Overall thermal sensation had significant impact on overall thermal comfort. Local thermal comfort of body segment was affected by both overall and local thermal sensations.  相似文献   

4.
The summer season in the state of Kuwait is long with a mean daily maximum temperature of 45 °C. Domestic air conditioning is generally deployed from the beginning of April to the end of October. This accounts for around 75% of Kuwaiti electrical power consumption. In terms of energy conservation, increasing the thermostat temperature by 1 °C could save about 10% of space cooling energy 1 and 2. However, knowledge of indoor domestic temperatures and thermal comfort sensations is important to aid future advice formulation and policy-making related to domestic energy consumption. A field study was therefore conducted during the summers of 2006 and 2007 to investigate the indoor climate and occupants' thermal comfort in 25 air-conditioned domestic buildings in Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait domestic residences, together with an analysis of domestic-occupant thermal comfort sensations. With respect to the latter, a total of 111 participants provided 111 sets of physical measurements together with subjective information via questionnaires that were used to collect the data. By using linear regression analysis of responses on the ASHRAE-seven-point thermal sensation scale, the neutral operative temperatures based on Actual Mean Vote (AMV) and Predicted Mean Vote (PMV) were found to be 25.2 °C and 23.3 °C, respectively, in the summer season. Findings from this study provide information about the indoor domestic thermal environment in Kuwait, together with occupant thermal comfort sensations. This knowledge can contribute towards the development of future energy-related design codes for Kuwait.  相似文献   

5.
This paper presents a study of local thermal sensation (LTS) and comfort in a field environmental chamber (FEC) served by displacement ventilation (DV) system. The FEC, 11.12 m (L)×7.53 m (W)×2.60 m (H), simulates a typical office layout. A total of 60 tropically acclimatized subjects, 30 male and 30 female, were engaged in sedentary office work for 3 h. Subjects were exposed to three vertical air temperature gradients, nominally 1, 3 and 5 K/m, between 0.1 and 1.1 m heights and three room air temperatures of 20, 23 and 26 °C at 0.6 m height. The objective of this study is to investigate the mutual effect of local and overall thermal sensation (OTS) and comfort in DV environment. The results show that in a space served by DV system, at OTS close to neutral, local thermal discomfort decreased with the increase of room air temperature. The OTS of occupants was mainly affected by LTS at the arm, calf, foot, back and hand. Local thermal discomfort was affected by both LTS and OTS. At overall cold thermal sensation, all body segments prefer slightly warm sensation. At overall slightly warm thermal sensation, all body segments prefer slightly cool sensation.  相似文献   

6.
This paper presents a study of Perceived Air Quality (PAQ) and Sick Building Syndrome (SBS) using tropically acclimatized subjects in a Field Environmental Chamber (FEC) served by Displacement Ventilation (DV) system. The FEC, 11.12 m (L)×7.53 m (W)×2.60 m (H), simulates a typical office layout. A total of 60 subjects, 30 males and 30 females, were engaged in sedentary office work for 3 h. Air velocity in the space near the subjects was kept at below 0.2 m/s. Relative Humidity (RH) at 0.6 m height and outdoor air provision were maintained at 50% and 10 l/s/p, respectively. Subjects were exposed to three vertical air temperature gradients, nominally 1, 3 and 5 K/m, between 0.1 and 1.1 m heights and three room air temperatures 20, 23 and 26 °C at 0.6 m height. The main objective of this study is to evaluate the influence of temperature gradient and room air temperature (at 0.6 m height) on PAQ and SBS in DV environment. It was found that temperature gradient had insignificant impact on PAQ and SBS. Dry air sensation, irritations and air freshness decreased with increase of room air temperature.  相似文献   

7.
Shanghai International Gymnastics Stadium is the selected object for site-measurement. The site-measurements have been carried out during summer, winter, and the transitional seasons. Their indoor thermal environments were controlled by continuous air-conditioning, intermittent air-conditioning and natural ventilation, respectively. The site-measurement includes outdoor environment (the weather conditions and peripheral hallway), indoor air temperature distribution (the occupant zone temperature, radial temperature near upper openings and the vertical temperature distributions, etc.), and the heat balance of air-conditioning system, etc. It is found that temperature stratification in winter with air-conditioning is most obvious. The maximum difference of vertical temperature is 15 °C in winter. The second largest one is 12 °C in summer, and less than 2 °C in the transitional season. The results of measurements indicate that it is different in the characteristics on energy saving of upper openings during the different seasons. With heat balance measurements, it is discovered that the roof load and ventilated and infiltrated load account for larger percentages in terms of cooling and heating load. In this paper, many discussions on the results of site measurements show some characteristics and regulations of indoor thermal environment in large space building.  相似文献   

8.
In the ASHRAE comfort database [1], underpinning the North American naturally ventilated adaptive comfort standard [2], the mean indoor air velocity associated with 90% thermal acceptability was relatively low, rarely exceeding 0.3 m/s. Post hoc studies of this database showed that the main complaint related to air movement was a preference for ‘more air movement’ 3 and 4. These observations suggest the potential to shift thermal acceptability to even higher operative temperature values, if higher air speeds are available. If that were the case, would it be reasonable to expect temperature and air movement acceptability levels at 90%? This paper focuses on this question and combines thermal and air movement acceptability percentages in order to assess occupants. Two field experiments took place in naturally ventilated buildings located on Brazil’s North-East. The fundamental feature of this research design is the proximity of the indoor climate observations with corresponding comfort questionnaire responses from the occupants. Almost 90% thermal acceptability was found within the predictions of the ASHRAE adaptive comfort standard and yet occupants required ‘more air velocity’. Minimum air velocity values were found in order to achieve 90% of thermal and air movement acceptability. From 24 to 27 °C the minimum air velocity for thermal and air movement acceptability is 0.4 m/s; from 27 to 29 °C is 0.41–0.8 m/s, and from 29 to 31 °C is >0.81 m/s. These results highlight the necessity of combining thermal and air movement acceptability in order to assess occupants’ perception of their indoor thermal environment in hot humid climates.  相似文献   

9.
A series of ventilation, thermal and indoor air quality measurements were performed in 14 different dairy buildings in Estonia and Finland. The number of animals in the buildings varied from 30 to 600. Measurements were made all year round with ambient temperatures ranging between −40 °C and +30 °C. The results showed that microclimatic conditions in the dairy buildings were affected by the design of the building, outside temperature, wind, ventilation and manure handling method. The average inside air concentration of carbon dioxide was 950 ppm, ammonia 5 ppm, methane 48 ppm, relative humidity 70% and inside air velocity was 0.2 m/s. Although occasionally exceeded, the ventilation and average indoor air quality in the dairy buildings were mainly within the recommended limits.  相似文献   

10.
The use of displacement ventilation for cooling environments is limited by the vertical temperature gradient. Current standards recommend a temperature difference of up to 3 K/m between the head and the feet. This paper reviews the scientific literature on the effect of vertical temperature gradients on thermal comfort and compares this to the results of our own experiments. Early experiments have demonstrated a high sensitivity of dissatisfied test subjects to changes in the temperature gradient between head and foot level. Recent studies have indicated that temperature gradients of 4‐5 K/m are likely to be acceptable, and the mean room temperature may have a greater sensitivity on the percentage of dissatisfied (PD). In new experiments, test subjects have evaluated the thermal comfort of different vertical air temperature gradients in a modular test chamber, the Aachen comfort cube (ACCu), where they have assessed vertical temperature gradients of ΔTy = 1, 4.5, 6, 8, and 12 K/m at a constant mean room temperature of 23°C. The results of the different temperature gradients are in contrast to ANSI/ASHRAE Standard 55 (Thermal Environmental Conditions for Human Occupancy, Atlanta GA, American Society of Heating, Refrigerating and Air Conditioning Engineers, 2013) as the PD increases almost constantly with higher vertical air temperature gradients. The PD for the overall sensation increases by approximately 7% between gradients of 1 and 8 K/m. The evaluation of our own tests has revealed that vertical temperature gradients of up to 8 K/m or higher are likely to be acceptable for test subjects.  相似文献   

11.
Numerical simulation of the indoor environment   总被引:1,自引:0,他引:1  
The CFD program VORTEX which has been developed for predicting the indoor environment in occupied spaces is described. The flow equations are the continuity equation, the Navier-Stokes equation, the thermal energy equation, the concentration equation and the equations for the kinetic energy of turbulence (k) and its dissipation rate () of the k- turbulence model. The equations are solved for the 3-D Cartesian system using the SIMPLE algorithm. The program produces a direct simulation of the thermal comfort indices PMV and PPD and the air quality of room air. Some applications involving mechanically ventilated (heating and cooling) and naturally ventilated rooms are presented. Results in the form of velocity vectors and contours for temperature, thermal comfort indices (PMV and PPD) and CO2 concentration are produced for the cases investigated. Simulations using this program can provide design data as required by thermal comfort and indoor air quality standards and guides.  相似文献   

12.
This study was conducted during the summer and winter in Beijing. Classrooms and offices in a university were used to conduct the survey. The respondents’ thermal sensation and thermal adaptability in both seasons were analyzed. During the study, indoor environmental parameters including air temperature, mean radiant temperature, relative humidity, and air velocity were measured. The respondents’ thermal sensation was determined by questionnaire.A relationship between indoor temperature and thermal sensation was found. In the summer study, the “scissors difference” between TSV and PMV was observed in the air-conditioned environments if the temperature was out of the neutral zone. People had higher tolerance in the hot environment than PMV predicted. During winter, the outdoor temperature had a prominent influence on thermal adaptability. The low outdoor temperature made people adapt to the cold environment. When the indoor temperature was heated to a high temperature by space heating facilities, respondents felt uncomfortable since their adaptability to the cold environment was nullified.Furthermore, the differences in thermal responses between respondents from North and South China showed that the different climates of people's native regions also affected their thermal comfort and adaptability.  相似文献   

13.
不同气流组织下夏季空调室内热舒适环境模拟   总被引:2,自引:0,他引:2  
基于模型和Fanger提出的热舒适性PMV评价指标,对三种不同气流组织条件下夏季室内热舒适环境进行了数值模拟,模拟结果给出了室内的速度、温度及舒适度PMV指标分布情况。研究结论为改善室内热舒适环境,舒适性空调系统的设计及节能控制提供了参考依据。  相似文献   

14.
Treatment of fresh air in ventilation systems for air-conditioned offices consumes a significant amount of energy and affects the indoor air quality (IAQ). In this study, energy impact on the ventilation systems was examined against certain IAQ objectives for indoor airborne bacteria exposure risk in air-conditioned offices of Hong Kong. The relationship between thermal energy consumptions and indoor airborne bacteria exposure levels based on regional surveys was investigated. The thermal energy consumptions of ventilation systems operating for carbon dioxide (CO2) exposure concentrations between 800 and 1200 ppmv for typical office buildings and the corresponding failure probability against some target bacteria exposure levels were evaluated. The results showed that, for a reference indoor environment at a CO2 exposure concentration of 1000 ppmv, the predicted average thermal energy saving of ventilation system for a unit increment of the expected risk of unsatisfactory IAQ of 1% was 55 MJ m−2 yr−1 and for a unit decrement of 1%, the predicted additional thermal energy consumption was 58 MJ m−2 yr−1 respectively. This study would be a useful source of reference in evaluation of the energy performance of ventilation strategies in air-conditioned offices at a quantified exposure risk of airborne bacteria.  相似文献   

15.
In Kuwait, as in most countries with a typical dry desert climate, the summer season is long with a mean daily maximum temperature of 45 °C. Centralized air-conditioning, which is generally deployed from the beginning of April to the end of October, can have tremendous impact on the amount of electrical energy utilized to mechanically control the internal environment in mosque buildings. The indoor air temperature settings for all types of air-conditioned buildings and mosque buildings in particular, are often calculated based on the analytical model of ASHRAE 55-2004 and ISO 7730. However, a field study was conducted in six air-conditioned mosque buildings during the summers of 2007 to investigate indoor climate and prayers thermal comfort in state of Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait mosque buildings, together with an analysis of prayer thermal comfort sensations for a total of 140 subjects providing 140 sets of physical measurements and subjective questionnaires were used to collect data. Results show that the neutral temperature (Tn) of the prayers is found to be 26.1 °C, while that for PMV is 23.3 °C. Discrepancy of these values is in fact about 2.8 °C higher than those predicted by PMV model. Therefore, thermal comfort temperature in Kuwait cannot directly correlate with ISO 7730 and ASHRAE 55-2004 standards. Findings from this study should be considered when designing air conditioning for mosque buildings. This knowledge can contribute towards the development of future energy-related design codes for Kuwait.  相似文献   

16.
测试了空气温度、平均辐射温度、相对湿度、风速等环境参数,采用问卷的形式调查了受试者的主观热感觉,建立了热感觉与室内操作温度的对应关系。在夏季,人们对偏热环境的耐受力强于PMV预测结果;在冬季,人体对于偏冷环境具有适应性,若室内温度偏高,人会感觉不适,实际热感觉高于PMV预测值;由于供暖条件的差异,长期生活在我国南方的人冬季对于偏冷环境的适应性要强于北方人。  相似文献   

17.
Human response to air movement supplied locally towards the face was studied in a room with an air temperature of 20 °C and a relative humidity of 30%. Thirty-two human subjects were exposed to three conditions: calm environment and facially supplied airflow at 21 °C and at 26 °C. The air was supplied with a constant velocity of 0.4 m/s by means of personalized ventilation towards the face of the subjects. The airflow at 21 °C decreased the subjects' thermal sensation and increased draught discomfort, but improved slightly the perceived air quality. Heating of the supplied air by 6 K (temperature increase by 4 K at the target area) above the room air temperature decreased the draught discomfort, improved subjects' thermal comfort and only slightly decreased the perceived air quality. Elevated velocity and temperature of the localized airflow caused an increase of nose dryness intensity and number of eye irritation reports. Results suggest that increasing the temperature of the air locally supplied to the breathing zone by only a few degrees above the room air temperature will improve occupants' thermal comfort and will diminish draught discomfort. This strategy will extend the applicability of personalized ventilation aiming to supply clean air for breathing at the lower end of the temperature range recommended in the standards. Providing individual control is essential in order to avoid discomfort for the most sensitive occupants.  相似文献   

18.
通过模拟地板送风系统的两种典型系统形式,从获得的温度场、速度场、PMV场表明,下送上回系统较容易满足垂直空气温差的限值,下送下回系统容易超出垂直空气温差的限值,在低热力长度尺度(lm/H)时下送下回系统比下送上回系统容易获得舒适的环境,在高热力长度尺(lm/H)时,两种系统形式均易产生偏冷的室内环境。  相似文献   

19.
This paper presents a thermal comfort study using a thermal manikin in a field environment chamber served by the Displacement Ventilation (DV) system. The manikin has a female body with 26 individually heated and controlled body segments. The manikin together with subjects was exposed to 3 levels of vertical air temperature gradients, nominally 1, 3 & 5 K/m, between 0.1 and 1.1 m heights at 3 room air temperatures of 20, 23 and 26 °C at 0.6 m height. Relative humidity at 0.6 m height and air velocity near the manikin and the subjects were maintained at 50% and less than 0.2 m/s, respectively. The aims of this study are to assess thermally non-uniform environment served by DV system using the manikin and correlate the subjective responses with measurements from the manikin. The main findings indicate that room air temperature had greater influence on overall and local thermal sensations and comfort than temperature gradient. Local thermal discomfort decreased with increase of room air temperature at overall thermally neutral state. The local discomfort was affected by overall thermal sensation and was lower at overall thermally neutral state than at overall cold and cool sensations.  相似文献   

20.
本文以某典型的层式通风供暖办公室为研究对象,通过正交设计的极差分析法,得出不同送风参数和壁面温度对该房间舒适性指标PMV,空气龄,吹风感及垂直温差的影响顺序。基于正交设计的综合平衡法,得到该房间优化的送风参数方案:当壁面温度14℃时,送风角度20°、送风温度27℃、送风速度1.8 m/s。经模拟验证,优化后的房间舒适性达到ISO 7730 A级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号