首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A novel design of cone-shaped tubular segmented-in-series solid oxide fuel cell (SOFC) stack is presented in this paper. The cone-shaped tubular anode substrates are fabricated by slip casting technique and the yttria-stabilized zirconia (YSZ) electrolyte films are deposited onto the anode tubes by dip coating method. After sintering at 1400 °C for 4 h, a dense and crack-free YSZ film with a thickness of about 7 μm is successfully obtained. The single cell, NiO-YSZ/YSZ (7 μm)/LSM-YSZ, provides a maximum power density of 1.78 W cm−2 at 800 °C, using moist hydrogen (75 ml min−1) as fuel and ambient air as oxidant.A two-cell-stack based on the above-mentioned cone-shaped tubular anode-supported SOFC is fabricated. Its typical operating characteristics are investigated, particularly with respect to the thermal cycling test. The results show that the two-cell-stack has good thermo-mechanical properties and that the developed segmented-in-series SOFC stack is highly promising for portable applications.  相似文献   

2.
High Temperature Electrolysis (HTE) through a solid oxide electrolytic cell (SOEC) had been receiving more and more attentions recently because of its high conversion efficiency (45–59%) and its potential usage for large-scale hydrogen or synthetic fuels production. One of the key technologies associated with SOEC fabrication was to prepare dense yttria-stabilized zirconia (YSZ) electrolyte film on the surface of hydrogen electrode. A novel screen-printing method was developed to fabricate gas-tight YSZ films on porous NiO-YSZ to reduce ohmic resistance of electrolytes and improve electrochemical performance of cells in this paper. The effects of pre-calcining temperature of cathodes, numbers of printing layers and sintering temperature of YSZ films were investigated in detail. SEM and EIS analyses revealed that the selected process parameters had significant influences on the microscopic morphology of YSZ electrolyte film, the OCVs and power density of the prepared cells. After optimization, a 10 μm dense YSZ film was prepared successfully on porous NiO-YSZ support with an OCV of 1.069 V and the electrolysis current density up to 0.681 A/cm2 at 1.50 V and 850 °C.  相似文献   

3.
A simple phase-inversion process is successfully combined with a dip-coating process to fabricate anode-supported micro-tubular solid oxide fuel cells (SOFCs). Several processing parameters were systematically investigated to optimize cell microstructure and performance, including the amount of pore former used in the support substrate and the number of electrolyte coatings. Single cells with ∼240 μm thick NiO-YSZ support and 10 μm thick YSZ electrolyte were successfully fabricated, demonstrating peak power densities of 752 and 277 mW cm−2 at 800 and 600 °C, respectively, when a composite cathode consisting of La0.85Sr0.15MnO3 and Sm0.2Ce0.8O2−δ was used. This simple fabrication technique can be readily used for optimization of fuel cell microstructures and for cost-effective fabrication of high-performance SOFCs, potentially reducing the cost of SOFC technologies.  相似文献   

4.
A NiO-YSZ/porous YSZ dual-layer hollow fiber with an asymmetric structure was fabricated by a co-spinning-sintering method. A dense YSZ electrolyte film was prepared on NiO-YSZ layer by dip-coating method and calcined at 1450 °C; subsequently a porous cathode was dip-coated on the dense YSZ electrolyte film using LSM-YSZ (in the weight ratio 4:1) ink to fabricate a micro tubular solid oxide fuel cell (MT-SOFC). Cu–CeO2 catalyst was impregnated into the porous YSZ layer to form the second anode composition. The power output of the MT-SOFC with Ni-YSZ/Cu–CeO2-YSZ graded anode was up to 242 mW cm−2 operated at 850 °C using CH4 as fuel and air as oxidant. Little carbon deposition was observed on the double anode using methane as the fuel after 60 h' stable operation.  相似文献   

5.
A co-tape casting technique was applied to fabricate electrolyte/anode for solid oxide fuel cells. YSZ and NiO-YSZ powders are raw materials for electrolyte and anode, respectively. Through adjusting the Polyvinyl Butyral (PVB) amount in slurry, the co-sintering temperature for electrolyte/anode could be dropped. After being co-sintered at 1400 °C for 5 h, the half-cells with dense electrolytes and large three phase boundaries were obtained. The improved unit cell exhibited a maximum power density of 589 mW cm−2 at 800 °C. At the voltage of 0.7 V, the current densities of the cell reached 667 mA cm−2. When the electrolyte and the anode were cast within one step and sintered together at 1250 °C for 5 h and the thickness of electrolyte was controlled exactly at 20 μm, the open-circuit voltage (OCV) of the cell could reach 1.11 V at 800 °C and the maximum power densities were 739, 950 and 1222 mW cm−2 at 750, 800 and 850 °C, respectively, with H2 as the fuel under a flow rate of 50 sccm and the cathode exposed to the stationary air. Under the voltage of 0.7 V, the current densities of cell were 875, 1126 and 1501 mA cm−2, respectively. These are attributed to the large anode three phase boundaries and uniform electrolyte obtained under the lower sintering temperature. The electrochemical characteristics of the cells were investigated and discussed.  相似文献   

6.
This study discusses the fabrication and electrochemical performance of micro-tubular solid oxide fuel cells (SOFCs) with an electrolyte consisting a single-grain-thick yttria stabilized zirconia (YSZ) layer. It is found that a uniform coating of an electrolyte slurry and controlled shrinkage of the supported tube leads to a dense, crack-free, single-grain-thick (less than 1 μm) electrolyte on a porous anode tube. The SOFC has a power density of 0.39 W cm−2 at an operating temperature as low as 600 °C, with YSZ and nickel/YSZ for the electrolyte and anode, respectively. An examination is made of the effect of hydrogen fuel flow rate and shown that a higher flow rate leads to better cell performance. Hence a YSZ cell can be used for low-temperature SOFC systems below 600 °C, simply by optimizing the cell structure and operating conditions.  相似文献   

7.
A novel design of solid oxide fuel cell (SOFC) which utilizes a thick film (<20 μm) as an electrolyte support is developed and tested. The sintered 16 μm-thick yttria-stabilized zirconia (YSZ) electrolyte film is mounted on a 1-mm thick YSZ ring by sintering the two pieces together. With this new configuration, it is possible to fabricate a thick (<20 μm) electrolyte-supported SOFC and measure the power density of the unit cell. With LSCF (La0.6Sr0.4Co0.2Fe0.8O3−δ) as a cathode and Ni–YSZ as a composite anode, the cell with a 16 μm-thick YSZ electrolyte achieves a high performance, i.e., a maximum power density of 590 mW cm−2 at 800 °C. This value is comparable with that of most anode-supported SOFCs using YSZ electrolytes.  相似文献   

8.
In this work, solid oxide fuel cells were fabricated by ink-jet printing. The cells were characterized in order to study the resulting microstructure and electrochemical performance. Scanning electron microscopy revealed a highly conformal 6–12 μm thick dense yttria-stabilized zirconia electrolyte layer, and a porous anode-interlayer. Open circuit voltages ranged from 0.95 to 1.06 V, and a maximum power density of 0.175 W cm−2 was achieved at 750 °C. These results suggest that the ink-jet printing technique may be used to fabricate stable SOFC structures that are comparable to those fabricated by more conventional ceramics processing methods. This study also highlights the significance of overall cell microstructural impact on cell performance and stability.  相似文献   

9.
A slurry spin coating method was developed to fabricate gas-tight anode-supported YSZ films for solid oxide fuel cells (SOFCs). Several technique parameters for slurry spin coating, such as the slurry viscosity, spinning speed, number of coating cycles, film thickness and their effects on YSZ electrolyte film were investigated. SEM results, open-circuit voltage (OCV) values and cell performance indicated that these parameters had crucial and obvious influences on YSZ film quality and fuel cell performance. Based on the optimized parameters, anode-supported YSZ films and several single fuel cells were successfully fabricated and tested. An OCV as high as 1.06 V was obtained at 800 °C and maximum power densities of 900, 1567, 2005 mW cm−2 were achieved at 700, 750, 800 °C, respectively, using hydrogen as fuel and ambient air as oxidant.  相似文献   

10.
A gelcasting process has been developed to fabricate tubular NiO/YSZ anode-support for solid oxide fuel cells (SOFCs) successfully. The rheological behaviors of the ceramic particle suspensions for gelcasting were investigated as a function of the process parameters, such as the amount of pore former, pH value, dispersant concentration, monomer concentration, ball-mill time and solid loading. The sintering shrinkage, microstructure, bending strength and electrical conductivity of the sintered specimens were examined. The tubular Ni/YSZ anode-support obtained under the optimized preparation conditions exhibited a porosity of 39.6%, mean pore size of below 0.9 μm, 482 s cm−1 in electrical conductivity at 700 °C, and the bending strength of 112.8 MPa, which can well meet the requirements for SOFCs.  相似文献   

11.
A simple and feasible technique is developed successfully to fabricate the cone-shaped tubular segmented-in-series solid oxide fuel cell (SOFC) stack. The cone-shaped tubular anode substrates and yttria-stabilized zirconia (YSZ) electrolyte films are fabricated by dip coating technique. After sintering at 1400 °C for 4 h, a dense and crack-free YSZ film with a thickness of about 35.9 μm is successfully obtained. The single cell, NiO–YSZ/YSZ/LSM–YSZ, provides a maximum power density of 1.08 and 1.35 W cm−2 at 800 and 850 °C, respectively, using moist hydrogen (75 ml/min) as fuel and ambient air as oxidant.A two-cell-stack based on the above-mentioned cone-shaped tubular anode-supported SOFC was assembled and tested. The maximum total power at 800 °C was about 3.7 W.  相似文献   

12.
GdBaCo2O5+x (GBCO) was evaluated as a cathode for intermediate-temperature solid oxide fuel cells. A porous layer of GBCO was deposited on an anode-supported fuel cell consisting of a 15 μm thick electrolyte of yttria-stabilized zirconia (YSZ) prepared by dense screen-printing and a Ni–YSZ cermet as an anode (Ni–YSZ/YSZ/GBCO). Values of power density of 150 mW cm−2 at 700 °C and ca. 250 mW cm−2 at 800 °C are reported for this standard configuration using 5% of H2 in nitrogen as fuel. An intermediate porous layer of YSZ was introduced between the electrolyte and the cathode improving the performance of the cell. Values for power density of 300 mW cm−2 at 700 °C and ca. 500 mW cm−2 at 800 °C in this configuration were achieved.  相似文献   

13.
In order to reduce the cost of the manufacturing of Solid Oxide Fuel Cells (SOFC), and to enable metal supported cell fabrication, a new fabrication method called Reactive Spray Deposition Technology (RSDT) for direct deposition of the material onto ceramic or metal support for low temperature SOFC is currently being developed. The present work describes the effect on the performance of a SOFC when a Gd0.2Ce0.8O1.9 (GDC) layer has been introduced as diffusion barrier layer between the yttria stabilized zirconia (YSZ) electrolyte and the La0.6Sr0.4CoO3−δ (LSC) cathode. The dense, thin and fully crystalline GDC films were directly applied by RSDT, without any post-deposition heating or sintering step. The quality of the film and performance of the cell prepared by RSDT was compared to a GDC blocking layer deposited by screen printing (SP) and then sintered. The observed ohmic resistance of the ASC with a GDC layer deposited by RSDT is 0.24 Ω cm2, which is close to the expected theoretical value of 0.17 Ω cm2 for a 5-μm thick 8 mol% yttria YSZ (8YSZ) electrolyte at 873 K.  相似文献   

14.
A simple method, without using lithography or etching processes, for fabricating a micro-solid oxide fuel cell (micro-SOFC) that utilizes a metal substrate is presented. A porous and thin (<25 μm) metal (Ni) film is fabricated by screen printing a NiO film on a ceramic substrate and subsequently reducing this film. Electrolyte and the cathode layers are sequentially deposited on the Ni-film substrate. Micro-SOFCs with a thin-film Gd-doped ceria electrolyte, supported on the Ni substrate, are successfully tested at 450 °C.  相似文献   

15.
Solid oxide fuel cells (SOFC) were fabricated with gadolinia-doped ceria (GDC)-yttria stabilized zirconia (YSZ), thin bi-layer electrolytes supported on Ni + YSZ anodes. The GDC and YSZ layer thicknesses were 45 μm, and ∼5 μm, respectively. Two types of cells were made; YSZ layer between anode and GDC (GDC/YSZ) and YSZ layer between cathode and GDC (YSZ/GDC). Two platinum reference electrodes were embedded within the GDC layer. Cells were tested at 650 °C with hydrogen as fuel and air as oxidant. Electric potentials between embedded reference electrodes and anode and between cathode and anode were measured at open circuit, short circuit and under load. The electric potential was nearly constant through GDC in the cathode/YSZ/GDC/anode cells. By contrast, it varied monotonically through GDC in the cathode/GDC/YSZ/anode cells. Estimates of oxygen chemical potential, μO2, variation through GDC were made. μO2 within the GDC layer in the cathode/GDC/YSZ/anode cell decreased as the current was increased. By contrast, μO2 within the GDC layer in the cathode/YSZ/GDC/anode cell increased as the current was increased. The cathode/YSZ/GDC/anode cell exhibited maximum power density of ∼0.52 W cm−2 at 650 °C while the cathode/GDC/YSZ/anode cell exhibited maximum power density of ∼0.14 W cm−2 for the same total electrolyte thickness.  相似文献   

16.
A simple and cost-effective gel-casting technique is developed and optimized to fabricate NiO/stabilized yttria–zirconia (YSZ) anode-supported solid oxide fuel cells (SOFCs). The effect of ammonium poly-(methacrylate) (PMAA) dispersant and pH on the zeta potential of YSZ and NiO particles and the viscosity of the NiO/YSZ slurries is studied in detail. The results show that the absolute zeta potential of YSZ and NiO particles reaches a maximum value at pH value ∼10 and the viscosity of the NiO/YSZ slurry is lowest when the PMAA dispersant content is 1.5 wt.%. A gel-cast NiO/YSZ anode-supported button cell with a spin-coated, thin, YSZ electrolyte film (∼9 μm) and a La0.72Sr0.18MnO3−δ (LSM)/YSZ composite cathode gives a peak power output of 1.07 and 0.65 W cm−2 at 900 and 800 °C under humidified hydrogen and air. The effect of a graphite pore-former in the gelation and microstructure of NiO/YSZ anode substrates is investigated.  相似文献   

17.
A dense and uniform 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3YSZ) electrolyte film of 6 μm in thickness was fabricated by slurry spin coating on a porous NiO/3YSZ anode substrate. Composite cathodes of La0.7Sr0.3MnO3 impregnated with Sm0.2Ce0.8O1.9 were fabricated on the 3YSZ films. A single cell produced in this way was tested at 700, 750 and 800 °C with hydrogen as fuel and stationary air as oxidant. Test results revealed an open-circuit voltage of 1.04 V at 800 °C, and maximum power density of 551, 895 and 1143 mW cm−2 at 700, 750 and 800 °C, respectively. Impedance spectra results demonstrated that the cell performance was determined by the polarization resistance of the cathode.  相似文献   

18.
Recently, solid oxide fuel cells (SOFCs) have attracted considerable attention because of their low emissions, high-energy conversion efficiency, and flexible usage of various fuels. One of the key problems of applying flat-type SOFCs to large-scale power generation is that unit cells of large area and with a high degree of flatness cannot be manufactured satisfactorily.In this study, the effects of tape-casting, laminating, and co-firing conditions on the flatness of anode-supported electrolyte unit cells have been investigated to improve the cell performance of unit cells. The cells are composed of a Ni-yttria-stabilized zirconia (YSZ) anode, a Ni-YSZ anode functional layer (AFL), a YSZ electrolyte, and a lanthanum strontium manganate (LSM)-YSZ cathode. The flatness of the anode-supported electrolyte is optimized by controlling the firing schedule, the lamination method, and the applied load during firing. A 5 cm × 5 cm (active area 4 cm × 4 cm) unit cell having a reasonable flatness of 55 μm/5 cm shows a higher power output of 11.4 W as compared with 7.7 W a unit cell with a flatness of 200 μm/5 cm, when operating at 800 °C with humidified hydrogen fuel.  相似文献   

19.
In this study, we report the facile fabrication of thin-film yttria-stabilized zirconia (YSZ) electrolytes and Sm0.2Ce0.8O1.9 (SDC) buffering layers for solid oxide fuel cells (SOFCs) using a thermal inkjet printing technique. Stable YSZ and SDC inks with solids contents as high as 20 and 10 wt.%, respectively, were first prepared. One single printing typically resulted in an YSZ membrane with thickness of approximately 1.5 μm, and membranes with thicknesses varied from 1.5 to 7.5 μm were fabricated with multiple sequential printing. An as-fabricated cell with a La0.8Sr0.2MnO3 (LSM) cathode delivered a peak power density (PPD) of 860 mW cm−2 at 800 °C. The SDC layer prepared using the inkjet printing method exhibited enclosed pores and a rough surface, which was, however, ideal for its application as a buffering layer. A cell with a dense 7.5-μm-thick YSZ layer, a 2-μm-thick SDC buffering layer and a Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) cathode was fabricated; this cell delivered a PPD of 1040 mW cm−2 at 750 °C and a high open circuit voltage (OCV) of approximately 1.10 V. The described technique provides a facile method for the fabrication of electrolytes for SOFCs with precise thickness control.  相似文献   

20.
A solid oxide fuel cell with Sm0.2Ce0.8O1.9 (SDC) electrolyte of 10 μm in thickness and Ni–SDC anode of 15 μm in thickness on a 0.8 mm thick Ni–YSZ cermet substrate was fabricated by tape casting, screen printing and co-firing. A composite cathode, 75 wt.% Sm0.5Sr0.5CoO3 (SSCo) + 25 wt.% SDC, approximately 50 μm in thickness, was printed on the co-fired half-cell, and sintered at 950 °C. The cell showed a high electrochemical performance at temperatures ranging from 500 to 650 °C. Peak power density of 545 mW cm−2 at 600 °C was obtained. However, the cell exhibited severe internal shorting due to the mixed conductivity of the SDC electrolyte. Both the amount of water collected from the anode outlet and the open circuit voltage (OCV) indicated that the internal shorting current could reach 0.85 A cm−2 or more at 600 °C. Zr content inclusions were found at the surface and in the cross-section of the SDC electrolyte, which could be one of the reasons for reduced OCV and oxygen ionic conductivity. Fuel loss due to internal shorting of the thin SDC electrolyte cell becomes a significant concern when it is used in applications requiring high fuel utilization and electrical efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号