首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
利用Gleeble-1500热模拟试验机测定了H11Mn2SiA的动态连续冷却转变(CCT)曲线,并观察了其组织和硬度。结果表明,当H11Mn2SiA从奥氏体以不同冷却速率冷却时,存在奥氏体向铁素体和珠光体的转变、贝氏体转变和马氏体转变;贝氏体转变的临界冷却速度为2.5℃/s;冷却速度达到20℃/s时会出现马氏体组织;因此H11Mn2SiA的冷却速度应控制在≤1℃/s。实践中选用终轧温度860℃~900℃、吐丝温度850±10℃和0.10~0.15 m/s的辊道速度,能够将冷却速度控制在0.3~0.6℃/s范围内,使H11Mn2SiA获得最佳的组织和性能。  相似文献   

2.
用Gleeble-3500热模拟机研究了低碳钢 (%:0.19C、1.15Mn、0.008Mo、0.002Ti、0.032Als) 85 mm FTSR(薄板坯连铸连轧)铸坯在1 000℃以5 s-1速率变形40%,然后以5℃/s冷却到900℃并以50 s-1的速率变形30%,再以1~70℃/s冷却到400℃,空冷的连续相转变和组织。结果表明,冷却速度≤20℃/s时连续冷却转变的组织为铁素体和珠光体;冷却速度达30℃/s时,组织中出现少量粒状贝氏体。随冷却速度增加,晶粒尺寸减小,当冷却速度达10℃/s时,钢中的晶粒尺寸≤10μm,当冷却速度≥20℃/s时,钢中晶粒细化程度减弱。  相似文献   

3.
王凤琪  徐光  陈静  补丛华  邹航 《特殊钢》2012,33(2):68-70
采用热膨胀法和金相法,通过Gleeble-1500热模拟试验机测定C-Mn-Si系低碳(/%:0.11C、1.15Si、1.85Mn、0.032Al、0.003 Ti、0.002 4N)和中碳(/%:0.35C、1.11Si、1.82Mn、0.041Al、0.002 Ti、0.004 2N)贝氏体钢在0.5~30℃/s的冷却速度下连续冷却时的膨胀曲线,确定相变点,并结合显微组织,借助Origin软件分别绘制出两种钢的连续冷却转变(CCT)曲线。结果表明,0.11%C钢当冷却速度≤1℃/s时获得铁素体+贝氏体+马氏体组织,冷却速度≥2℃/s时为贝氏体+马氏体组织,0.35%C钢冷却速度≥0.5℃/s即可获得贝氏体+马氏体组织;随碳含量增加,贝氏体和马氏体转变温度均降低。  相似文献   

4.
为降低P110级石油套管淬火冷却过程中的内应力,提出"水淬—空冷—水淬"的优化冷却方式,并利用有限元方法对冷却过程中温度、应力场的变化规律和分布状态进行了模拟.模拟结果表明:冷却至7.5s出水时,横截面上最大温差为104℃,空冷结束时断面温度均匀;再次水冷的最大温差为80℃,与7.5s时相比,温差降低了24℃.对于应力,在最初的水冷阶段,从开始到2.5s,切向应力增大,2.5~5.5s,切向应力降低,冷却至5.5s时发生组织转变,此后热应力和组织应力共存,切向应力随冷却进行迅速升高,并在7.5s时达到最大,为563MPa;出水空冷阶段,热应力减小,组织应力消失,13s空冷结束时切向应力分布较均匀,为-11~27MPa;再次入水冷却至13.6s,切向应力再次达到最大,为451MPa,比7.5s时的563MPa降低了112MPa,达到了优化冷却工艺的目的.  相似文献   

5.
毛新平  谢利群 《特殊钢》2012,33(3):44-46
采用膨胀法测定了56 mm薄板坯连轧成6 mm板的30CrMo钢(/%:0.32C、0.20Si、0.60Mn、0.20Ni、0.97Cr、0.18Mo)在0.03~15.60℃/s冷却速率下的连续冷却转变(CCT)曲线并观察了各冷却速率下的显微组织。得出30CrMo钢的相变临界点Ac3=800℃,Ac1=735℃,Bs=510℃,Ms=340℃,Mf=220℃。应用结果表明,30CrMo钢6 mm板卷取后的空冷的冷却速率≤0.06℃/s,当卷取温度为610~640℃时获得铁素体+珠光体组织,避免贝氏体形成导致强度显著升高和塑性变差。  相似文献   

6.
开发的低碳贝氏体钢Q650(%:0.06~0.08C、1.6~1.8Mn、≤0.3Cr、≤0.06Nb、≤0.02Ti、≤0.15Mo、≤0.05V、≤0.002B)(20~40)mm×(1 600~3 200)mm钢板的生产流程为铁水预处理-120 t转炉-LF精炼-连铸-控轧-控冷。通过控制再结晶区单道次变形量≥15%,累积变形量≥50%,未再结晶区道次累积变形量≥60%,冷却速度15℃/s,终冷温度≥500℃,可获得不同类型的贝氏体相变组织,并具有良好的综合性能。  相似文献   

7.
Yuki  TOJI  乔林锁 《冶金译丛》2014,(4):48-53
研究了临界退火过程中和随后的α→γ-α有序转变现象,实现对化学成分为0.13wt%C~1.4wt%Si-2.0wt%Mn低碳冷轧DP钢板机械性能的更好控制。钢在1073K临界退火0-1000s,然后空冷到873—1073K(淬火开始温度:Tq),随后水淬。随退火时间的延长抗拉强度提高,特别在低Tq时,对应的马氏体体积分数增加,这意味着由于延长退火时间延迟了空冷过程中γ→α转变。用EPMA观察显微组织和元素分布表明,退火250s后γ的体积分数已达到饱和,这时γ中的Mn含量一直在增大。这些结果表明在临界退火过程中,由于Mn的富集提高了γ的化学稳定性,延长退火时间后,在空冷过程中延迟了γ→α转变。为获得冷轧DP钢板稳定的机械性能,认为精确控制显微组织和临界退火过程中置换合金元素再分布是十分重要的。  相似文献   

8.
通过Gleeble-1500热模拟机,模拟340机组36Mn2V和40Mn2V钢950~1 100℃,变形量0.5~0 8.变形速度1.0 s-1,水冷和3℃/s冷却的连轧工艺与800~950℃,变形量0.10~0.30,变形速度0.5 s-1,空冷的定径工艺对组织和硬度的影响。结果表明,36Mn2V和40Mn2V钢连轧变形温度和变形量分别大于1 050℃和0.5时可发生完全动态再结晶,细化晶粒和提高产品综合性能;36Mn2V钢管定径变形量0.3时,40Mn2V钢定径变形量为0.2时,应控制定径温度大于835℃,才能满足力学性能要求。  相似文献   

9.
《特殊钢》2017,(1)
通过Gleeble-3500热模拟试验机测定了U75V钢(/%:0.75C,0.63Si,0.95Mn,0.025P,0.004S,0.26Cr,0.05V)的CCT相变曲线,利用DEFORM-3D有限元软件,通过建立60AT钢轨轧后空冷过程中温度场、组织转变计算模型,研究分析了60AT钢轨150~700 s轧后空冷过程中温度、组织对弯曲变形的影响。结果表明,60AT钢轨具有的大体表比轨腰对钢轨整体断面温度分布影响较大,钢轨空冷150 s时,60AT钢轨断面上还未发生相变,组织全部为奥氏体,随着温度的降低,空冷650 s时,钢轨断面基本上珠光体转变量为97.2%,同时,弯曲变形受组织转变影响较大,终冷时,钢轨在Y方向(侧弯)弯曲挠度-0.07 mm,即弯向轨底短边,在Z方向(正弯)弯曲挠度为0.228 mm,即弯向轨头,计算结果为钢轨矫直过程中的预弯提供参考。  相似文献   

10.
热轧冷却速率对微合金非调质钢34Mn2VN组织的影响   总被引:1,自引:0,他引:1  
用Gleeble-1500热模拟试验机研究了非调质钢34Mn2VN(%:0.30~0.34C、1.20~1.70Mn、0.014~0.018N、0.07~0.12V)在950℃、平均应变速率2s-1、应变15%后以0.1~45℃/s不同冷却速率下冷却的动态CCT曲线和组织转变。结果得出,当冷却速率控制在0.8~2.0℃/s时所得到细小的铁素体和少量贝氏体组织,具有较高的冲击韧性。生产应用表明,采用该冷却速率生产Φ139.7×7.7(mm)和Φ114.0×6.4(mm)管材的冲击功为47.8~50.9J。  相似文献   

11.
根据武钢第一炼钢厂重轨钢连铸生产条件,建立380 mm ×280 mm方坯凝固传热数学模型,并采用射钉法验证及修正。模拟结果表明,U71Mn和U75V钢的凝固末端各自位于距结晶器液面16.96~21.68 m和16.50~21.17 m;减弱二冷强度或增大拉速,U71Mn和U75V钢凝固终点均会明显后移。根据计算结果,二冷制度由弱冷(0.346 L/kg)改为超弱冷(0.218 L/kg),拉速采用0.7 m/min,应用1~4~#机架轻压下,压下量为5~7 mm,U71Mn和U75V钢凝固终点延长至21 m以上。连铸工艺优化后,重轨钢大方坯中心疏松Ⅰ级内平均合格率由89.64%提高到99.50%。  相似文献   

12.
U20Mn2SiCrNiMo贝氏体钢轨的生产流程为150 t 转炉-LF-VD-280 mm×380 mm铸坯 轧制,终轧930~980 ℃,空冷-340 ℃ 4 h两次回火,空冷。U20Mn2SiCrNiMo钢热轧态(终轧930~980 ℃空冷)和(320 ℃一、二次回火)组织均由贝氏体、马氏体和残余奥氏体组成。力学性能试验结果表明:U20Mn2SiCrNiMo钢轨最佳回火工艺为320 ℃ 4 h空冷+320 ℃ 4 h空冷二次回火,其性能为:屈服强度1242 MPa,抗拉强度1393 MPa,HBW硬度值417,伸长率15.0%,断面收缩率60%,冲击吸收功KU2 98 J,轨底纵向残余应力+180 MPa。  相似文献   

13.
研究的重轨钢(/% :0, 68 - 0. 73C,0. 20~0. 30Si,l. 05 ~ 1.15Mn, ≤0. 015P, ≤O. 012S, ≤O. 003 5 Al,≤ O. 000 15[H], ≤0.006 0[N], ≤O, 002 0[0])的冶金流程为铁水脱硫预处理-120 t 转炉-LF-RH-280 nun x 380 mm 坯连铸。分析证实铸坯偏析是钢轨低倍检验和超声波探伤不合格的主要原因。试验研究了钢水过热度、拉速、结 晶器电磁搅拌、二冷水量和凝固末端动态轻压下对铸坯中心碳偏析的影响。通过采用优化的工艺措施:钢水过热 度15~30 拉速0.60 - 0. 75 m/min和恒拉速,结晶器电磁搅拌强度400 A,二冷比水量0.25 L/kg,轻压下6~7mm等,铸坯一般疏松≤1. 0级,中心疏松≤0. 5级,点状偏析≤0. 5级,等轴晶率≥37%,中心碳偏析指数0.94 ~ 1.06钢轨超声波探伤合格率提高至99. 3%以上。  相似文献   

14.
低合金高强度钢Q345E(/%:0.12~0.15C,0.20~0.25Si,1.40~1.50Mn,≤0.010P,≤0.005S)的生产流程为80 t顶底复吹转炉-LF-RH-Φ450 mm铸坯CC-Φ110 mm棒材连轧工艺。工艺试验了压缩比(10.33~20.25)、开轧温度(1120~1 080℃)和冷却方式(0.2℃/s空冷和0.5℃/s风冷)对该钢-40℃,V-型缺口冲击韧性的影响。结果表明,随压缩比增加,开轧温度降低,冷却速度增加,该钢-40℃冲击功显著增加,采用压缩比16.74,开轧温度1100℃,0.5℃/s风冷工艺,Q345E钢组织细小、均匀,-40℃冲击功为40 J。  相似文献   

15.
18CrNiM07-6钢(/%:0.17C、0.59Mn、0.24Si、1.56Ni、1.71Cr、0.28Mo)为表面硬化齿轮钢要求正火后钢的组织为铁素体+珠光体和较低的HB硬度值。18CrNiM07-6钢连续冷却后易得到高硬度的贝氏体组织。通过实验室高温箱式电阻炉试验表明,870~900℃1 h-640~660℃4 h炉冷至300℃,空冷,该钢的组织为铁素体+珠光体+贝氏体组织,HB硬度值为340~350;而870~900℃1 h,30℃/h至640~660℃,炉冷至300℃,空冷,该钢的组织为铁素体+珠光体,HB硬度值为190~210:生产试验表明,30 t Φ 180 mm 18CrNiM07-6钢锻材经900℃10 h,≤30℃/h至650℃25 h,30℃/h至500℃空冷,可获得铁素体+珠光体组织。  相似文献   

16.
苑阳阳  黄进科  张宇  麻晗 《特殊钢》2018,39(2):25-29
通过80 kg真空感应炉试验及Gleeble 3800热模拟试验机测试了连续冷却相转变(CCT)曲线,设计了S2钢的化学成分(/%:0.630.69C,1.001.20Si,0.400.60Mn,0.200.40Cr,0.400.50Mo,0.150.25V,0.100.30Ni,0.0100.030Nb,≤0.015P,≤0.010S),并进行120t BOF-LF-VD-300 mm×390 mm方坯连铸-开坯-高线轧制-斯太尔摩控冷流程的工业性生产。通过铁水脱硫,铁水硫含量≤0.010%,BOF终点[C]0.10%0.30%,[P]≤0.012%,钢水终点温度1620~1660℃,BOF出钢采用Si-Mn预脱氧,LF精炼渣(/%:8~10MgO,44~45CaO,5~10SiO2,25~35Al2O3,LF精炼结束喂钙线,连铸钢水过热度≤25℃,拉速0.65m/min和轧制控冷等工艺措施,成功开发了合金工具钢S2盘条。检验结果表明,Φ8mm热轧盘条奥氏体晶粒度为8.5~9.0级,脱碳层厚度≤0.5%D,热轧盘条HRC硬度值50,同卷HRC硬度值波动小于6,各项性能满足技术要求。  相似文献   

17.
百米U75V钢轨矫直前冷却过程温度场的有限元分析   总被引:4,自引:1,他引:3  
李革  崔海燕  陈林 《特殊钢》2009,30(1):1-3
通过研究U75V钢轨冷却过程的热边界条件,采用三维瞬态非线性有限元法计算了百米钢轨矫直前845~150℃冷却过程的温度场。结果表明,在冷却过程中的钢轨横截面不同位置的温度下降速率不同,在冷却初期(200~2 000s),每条冷却温度线都出现一个温度降低缓和的"平台"阶段,如轨底边部冷却速度最快,开始相变时间最早;在冷却2 500~3 000s时,轨头、轨腰、轨底中心的温度迅速下降,轨头与轨底边部的温差约5℃,在冷却5 000~7 000s时,各部位温差趋于一致;计算温度值和现场实测值差别小于50℃。  相似文献   

18.
采用热模拟试验机测定了SWRH82B钢(/%:0.80C,0.84Mn,0.22Si,0.013P,0.008S,0.32Cr)的相变点和连续冷却转变(CCT)曲线,通过金相显微镜、SEM、TEM及力学性能测试分析了冷却速度(1~25℃/s)对SWRH82B线材相变组织、珠光体片层间距和力学性能的影响,得到了最佳冷却速度为8~10℃/s;通过150 mm×150 mm SWRH82B钢铸坯轧成Φ13 mm盘条后风冷4组Z1~Z13辊道速度(0.8~1.25 m/s,1.0~1.45 m/s,1.05~1.50 m/s,1.10~1.55 m/s)和冷却速度(8.9,9.5,10.4,11.2℃/s)进行了生产试验,得出在斯泰尔摩风冷线上的获得最佳冷却速度8~10℃/s首段辊道速度应为0.8~1.0 m/s,可达到用户要求的指标:时效后抗拉强度≥1130MPa和断面收缩率≥30%,索氏体率≥80%,表面脱碳深度≤1.5%D(D-线材直径)。  相似文献   

19.
曹树卫  高新军  孙拓 《特殊钢》2019,40(5):46-49
采用金相分析方法对低合金高强度钢(/%:0.16~0.18C,0.20~0.40Si,1.42~1.55Mn, ≤0.025P, ≤0.012S,0.015~0.025Nb,0.100~0.115V,0.010 0~0.0150N)连铸板坯窄面微裂纹的产生机理进行了分析研究。结果表明:板坯窄面表层显微组织不合理如奥氏体晶粒粗大、奥氏体晶界处先共析铁素体膜的形成以及第二相质点在奥氏体晶界处的偏析等是微裂纹产生的机理。通过优化连铸板坯窄面冷却工艺,将窄面冷却水量增加35%;细化了晶粒,抑制了铁素体膜的产生,改变了第二相质点析出,改善了铸坯表层组织,消除了铸坯窄面微裂纹缺陷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号