首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
新型Mn-Cr齿轮钢的动态再结晶行为研究   总被引:1,自引:0,他引:1  
王秉新  徐旭东  刘相华  王国栋  胡旋 《钢铁》2004,39(9):54-57,73
采用Gleeble1500热模拟试验机研究了变形温度、变形速率、变形程度及奥氏体晶粒尺寸对新型Mn-Cr齿轮钢动态再结晶行为的影响。确定了该Mn-Cr齿轮钢的动态再结晶激活能Q及应力指数n分别为378.6kJ/mol和5.81,在热轧齿轮钢管穿孔工序中,变形温度为1100-1150℃,变形量为40%~54%,奥氏体处于动态再结晶状态;而在轧管及减径工序中,变形温度分别为1000~1050℃和900-950℃,变形量分别为21%和31%,奥氏体均处于加工硬化状态。  相似文献   

2.
利用Gleeble-3500热力模拟试验机,在温度为1123~1423 K,应变速率为0.1~10 s-1,真应变为0.8的条件下,对一种传动部件用高强度渗碳钢(SAE9310钢)进行了高温轴向压缩试验,测得了SAE9310钢的高温流变曲线,并观察其变形后的显微组织。试验结果表明,SAE9310钢的流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;SAE9310钢在真应变为0.8的条件下,随着变形速率的提高,其发生完全动态再结晶的温度也逐渐升高,当热变形温度高于1323 K时,应变速率在0.1~10 s-1范围内,试验钢均会发生动态完全再结晶;测得9310钢的热变形激活能Q值为416.78 kJ/mol,并确立了其热变形方程。  相似文献   

3.
利用Gleeble-3500热模拟试验机在变形温度900~1 200℃和应变速率0.01~10 s-1范围内,对40Cr钢试样进行压缩实验。研究了40Cr钢真应力-应变曲线特征,建立了峰值应力、应变速率和变形温度间的本构方程,并确定了40Cr钢热变形激活能为310.625 kJ/mol。研究结果显示:40Cr钢热变形时的流变软化机制为动态回复和动态再结晶;随着变形温度增加和应变速率减小,流变应力减小;试样的变形温度越高,应变速率越低,显微组织中的动态再结晶越完全,并且动态再结晶晶粒越容易长大。  相似文献   

4.
通过分析不同变形温度及应变速率下低硅含磷系TRIP钢高温流变曲线的变化规律,建立了本构关系,并分析了合金元素钒对其影响。结果表明,添加0.19%钒,由于固溶钒原子的拖曳作用,使动态再结晶激活能提高~6%,同时推迟了动态再结晶的发生,使σc/σp和εc/εp值均有所提高。通过回归得到无钒钢和含钒钢的峰值应力和临界应力、峰值应变和临界应变与lnZ的关系。  相似文献   

5.
SPHC钢热变形行为的研究   总被引:4,自引:0,他引:4  
孙蓟泉  张金旺  王永春 《钢铁》2008,43(9):44-0
 通过在Gleeble 3500热/力模拟实验机上的热压缩实验,研究不同热变形条件下SPHC钢的高温变形抗力,考察变形温度、应变速率及变形程度与变形抗力之间的关系,分析了SPHC钢的动态再结晶机理,最后建立了SPHC钢的变形抗力数学模型,通过回归分析可看出此模型有较高的拟合精度。  相似文献   

6.
45钢低温区热变形行为研究   总被引:1,自引:0,他引:1  
周家林  史密  张陪毅  杨光宇  余茹  代元 《钢铁》2014,49(10):62-65
 利用Gleeble-1500热模拟试验机研究了不同变形条件对45钢低温区热变形行为的影响。试验结果表明:峰值应力随变形温度的降低和应变速率的提高而增大;当应变速率[ε]≥0.01s-1、变形温度 [t]<500 ℃时,发生动态回复;当应变速率[ε]≤1s-1、变形温度[t]≥500 ℃时,发生动态再结晶。在Sellars -Tegart方程的基础上,建立了45钢低温区加工硬化-动态回复、动态再结晶2阶段流变应力模型;根据试验结果计算拟合了模型中各参数。采用建立的流变应力模型成功预测了动态回复、动态再结晶型应力-应变曲线。利用上述模型对45钢中厚板轧后低温工业热矫直的矫直力进行了预测,其结果与实测值吻合良好。  相似文献   

7.
钒对30MnSi钢热变形行为的影响   总被引:1,自引:0,他引:1  
通过对30MnSi和30MnSiV两种钢在Gleeble-1500热模拟试验机上的高温压缩变形实验,分析了不同变形条件下微合金元素钒对变形抗力的影响,通过试验数据的计算可知,30MnSiV钢的再结晶激活能比30MnSi钢大6.7%左右。  相似文献   

8.
Q235钢的热变形特性   总被引:1,自引:0,他引:1  
通过热模拟压缩试验,研究了Q235钢热变形时的动态再结晶行为,确定了其热变形激活能,建立了峰值应力、峰值应变、晶粒尺寸与Zener-Hollomon参数之间的关系模型.结果表明:Q235钢的动态再结晶主要发生在形变温度≥900℃、应变速率≤5 s-1(即lnZ≤37.77)的条件下.  相似文献   

9.
10.
方先知 《江苏冶金》1990,18(6):13-18
微合金化钢的多边形铁素体和针状铁素体的细化是获得强韧化和改善冷、热加工工艺性能的重要手段,其性能的获得与热变形态组织结构及再结晶过程有着极其重要的联系。本文试图通过微合金化钢的动态再结晶问题的若干实验结果并就铌对再结晶及热变形组织的影响和控制等问题,从宏观流变曲线及微观机理两方面试作某些理论上的探讨。  相似文献   

11.
Dynamic Recrystallization Behavior in Mn-Cr Gear Steel   总被引:1,自引:0,他引:1  
In the deformation process of austenite,the dy-namic recovery and the recrystallization occur,andthe austenite grain changes.First of all,the grainselongate and dislocation densityincreases.The poly-gonization in elongated austenite grain takes placeand the subcrystal forms due to slipping and cli mb-ing of dislocations,i·e·,dynamic recovery(DRV).When the strain reaches a critical value,new grainswill nucleate by bulging of the grain boundaries[1,2].This is so-called dynamic recrystallizat…  相似文献   

12.
Mn-Cr系列轿车齿轮钢的开发   总被引:1,自引:0,他引:1  
赵振刚  刘国安  高艳丽 《特殊钢》2002,23(Z1):59-60
北满特钢集团公司成功开发了含0.14%~0.30%C,0.60%~1.5%Mn,0.80%~1.30%Cr的MnCr系列齿轮钢,使其各项技术指标达到了DIN标准.  相似文献   

13.
X52管线钢热变形行为的研究   总被引:1,自引:0,他引:1  
用Gleeble-3500热模拟试验机对X52(L360)管线钢(%:0.08C、0.20Si、0.93Mn、0.024Als、0.02Nb、0.02Ti)在950~1200℃、应变速率0.01~10 s-1时进行50%热压缩变形试验,得出真应力-应变曲线。通过回归分析,确定X52钢热变形激活能和热变形方程,得出应变速率、温度和Z参数对热形变峰值应力的影响。结果表明,变形温度降低,峰值应力增加并向应变增大方向移动,随变形速率增加,峰值应力增大并且也向应变增大方向移动;X52钢热变形激活能为232 kJ/mol;随Z参数增加,热变形峰值应力增加。  相似文献   

14.
Hot Deformation Behavior of V-Microalloyed Steel   总被引:1,自引:0,他引:1  
Through the expansion curve of continuous cooling transformation at different cooling rates measured by THERMECMASTOR-Z thermal simulator for U75V rail steel,the continuous cooling transformation curve was obtained.The influence on steel microstructure and hardness at different cooling rates was studied.The softening behavior of isothermal deforming in austenite area of 850-1000 ℃ in the interval of passes was also studied by double-pass compression test.The results show that the product of austenite transformation is pearlite when the cooling rate is lower than 10 ℃.When the cooling rate was in the range of 10-50 ℃·s-1,only martensite was received.The hardness of the test steel increases with increasing the cooling rate.Under the condition of deformation of 30% and deformation rate of 3 s-1,the relaxation time for complete recrystallization was shorter than 100 s when deformation temperature was higher than 1000 ℃.When deformation temperature was lower than 880 ℃,complete recrystallization of steel was difficult to achieve even if the relaxation time is extended.  相似文献   

15.
在热模拟实验的基础上,分析了变形条件及微合金元素Nb(0.018%~0.056%)、V(0.01%-0.02%)、Ti(0.01%-0.02%)对0.06%-0.08%C实验钢的热变形行为的影响。在Sellas-Tartat方程的基础上,建立了应力-应变曲线数学模型:动态回复模型σ(e)=σ0 (σp—σ0)[1-exp(-3.23ε/εs)]^0.5,式中:σp-峰值应力,σ0-初始应力,ε-变形应变,σs-加工硬化与回复进入稳态的临界应变;动态再结晶模型σ=σ(e)-(σp-σss){1-exp[-2.363(ε-εc)εc^0.3425)^2]},式中:σss-动态再结晶进入稳态时的应力,εc-动态再结晶临界应变。利用该模型对0.07%C-0.018%Nb实验钢工业轧制时轧制压力进行了预测,其结果与实测值吻合良好。  相似文献   

16.
 Hot deformation behavior of GCr15 (ASTM 52100) steel was investigated using single-hit compression tests on Gleeble-1500 simulator at the temperature range of 850-1100 ℃ and strain rate range of 0. 1-10 s-1. The flow stress constitutive equation of GCr15 steel during hot deformation was determined by stress-strain curves analysis on the basis of the hyperbolic sine equation. And the models of dynamic recrystallization fraction and dynamic recrystallization grain size of GCr15 steel were established by the measured curves and microstructure observation in different experimental conditions. The mean activation energy and the time exponent of dynamic recrystallization kinetics equation in the range of experimental conditions were determined to be 356. 2 kJ/mol and 2. 12, respectively. Meanwhile, the flow stress model was also established by the method of allocating flow stress curve with three main stress values, the saturation stress, the steady state stress and the stress when strain is 0. 1. The flow stress curves predicted by the developed models under different deformation conditions are in good agreements with the measured ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号