首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of heat treatment temperature on crystallisation behaviour, precipitated phases and thermo-mechanical properties of some MgO–Al2O3–SiO2 (MAS) glass-ceramics were investigated. Crystallisation behaviour of MgO–Al2O3–SiO2 glasses in the presence of TiO2 as a nucleation agent was studied. The crystalline phases present in the heat treated samples were identified by X-ray diffraction (XRD). It was observed from XRD studies that magnesium aluminium titanate initially precipitated and when the heat treatment temperature was increased to 1140 °C, depending on the thermal history, either magnesium silicate, aluminium titanate and quartz or magnesium aluminium titanate, magnesium aluminate and quartz were precipitated. SEM observation revealed that the heat treatment led to phase separation of droplet-shaped crystals before the needle-shaped crystals formed at 1140 °C. The effect of annealing temperature on the density and mechanical properties of these glass-ceramic were characterised by nanoindentation and the results revealed a significant increase in hardness of the fully crystallised system.  相似文献   

2.
The glass formation abilities of various compositions in SrO–TiO2–Al2O3–SiO2, SrO–TiO2–B2O3–SiO2, SrO–TiO2–Al2O3–B2O3, and SrO–TiO2–Al2O3–SiO2–B2O3 systems were studied. Many new compositions were found to be suitable for the casting of crack-free, optically clear glasses of different color and with glass transition temperatures ranging from 595 to 775 °C. The crystallization behavior, structure, and thermal expansion behavior of selected glasses were analyzed by DTA, XRD, dilatometry, and heat treatment. The effect of P2O5 on the glass structure and crystallization behavior was also studied. P2O5 played a dual role depending on composition. In some glasses it acted as a nucleating agent while in others it suppressed crystallization. Heat treatment of borate and borosilicate glasses transformed them into glass-ceramics while comparable SrO–TiO2–Al2O3–SiO2 glasses showed a lower tendency to crystallize and form glass-ceramics under the same conditions.  相似文献   

3.
Ca 4 Mg 5 (PO 4 ) 6 :Eu2+^{\boldsymbol{2+}} blue-emitting phosphor was synthesized by the combustion-assisted synthesis method under reductive atmosphere. The products were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectrum. XRD analysis confirmed the formation of Ca 4 Mg 5 (PO 4 ) 6 pure phase. Photoluminescence results showed that the phosphor can be excited efficiently by UV light range from 230–400 nm, and then exhibited bright blue light with peak wavelength at 431 nm. It is a very promising candidate as a blue-emitting phosphor for potential applications in display devices.  相似文献   

4.
Glass-ceramic matrices containing zirconolite (nominally Ca(Zr,Hf)Ti2O7) crystals in their bulk that would incorporate high proportions of minor actinides (Np, Am, Cm) or plutonium could be envisaged for their immobilization. Zirconolite-based glass-ceramics can be prepared by controlled crystallization of zirconolite in glasses belonging to SiO2–Al2O3–CaO–Na2O–TiO2–ZrO2–HfO2 system. In this study, neodymium was used as trivalent actinides surrogate. Increasing Al2O3 concentration in glass composition had a strong effect on the nucleation rate I z of zirconolite crystals in the bulk, on the amount of neodymium incorporated in zirconolite phase and on the crystal growth rate of silicate phases (titanite + anorthite) from glass surface. These results could be explained by the existence of competition—in favor of aluminum—between Al3+ and (Ti4+, Zr4+, Hf4+) ions for their association with charge compensators cations to facilitate their incorporation in the glassy network. Differential thermal analysis (DTA) was used to study exothermal effects associated with bulk and surface crystallization. 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra showed that aluminum enters glasses network predominantly in 4-fold coordination. Neodymium optical absorption and fluorescence spectroscopies showed that the Al2O3 concentration changes performed in this study had not significant effect on Nd3+ ions environment in glasses.  相似文献   

5.
A lead-free, low-viscosity SnO–MgO–P2O5 glass powder was fabricated. Sinterability, wetting, flowability, crystallization, and the resulting properties of the glass powder were investigated. It is shown that the powder compact can be fully densified above 362 °C and show good wet to the substrate above 417 °C. The properties (coefficient of thermal expansion and chemical durability) of the sintered glass depend on the sintering temperature and are discussed in terms of the development of crystalline phases during sintering.  相似文献   

6.
This paper reports the preparation of highly concentrated aqueous hydroxyapatite (HA) suspensions for slip casting of dense bone implants. The dispersing behaviour of HA powders in aqueous media was monitored by viscosity and zeta potential analyses as a function of pH of the slurry. The rheological properties of concentrated aqueous hydroxyapatite suspensions have been characterized with varying pH, NH4PAA concentration and solids loading. The intrinsic pH of the suspension was found suitable for slip casting. The optimum dispersant concentration is 0.75 wt.% for 75 wt.% solid loading. A stable suspension with 75 wt.% solid was suitable for slip casting with viscosity of 0.36 Pa s at 100 s−1. Finally, crack-free and dense microstructures have been obtained successfully with a grain size of 2–5 μm.  相似文献   

7.
Synthetic bone replacement materials are of great interest because they offer certain advantages compared with organic bone grafts. Biodegradability and preoperative manufacturing of patient specific implants are further desirable features in various clinical situations. Both can be realised by 3D powder printing. In this study, we introduce powder-printed magnesium ammonium phosphate (struvite) structures, accompanied by a neutral setting reaction by printing farringtonite (Mg3(PO4)2) powder with ammonium phosphate solution as binder. Suitable powders were obtained after sintering at 1100°C for 5 h following 20–40 min dry grinding in a ball mill. Depending on the post-treatment of the samples, compressive strengths were found to be in the range 2–7 MPa. Cytocompatibility was demonstrated in vitro using the human osteoblastic cell line MG63.  相似文献   

8.
Double salts of o-phthalic acid of the general composition M2AnO2(C8H4O4)2 nH2O (M = NH4, K, Cs and An = Pu, Np) were isolated from neutral aqueous solutions. The composition was determined by chemical analysis. The compounds were characterized by powder X-ray diffraction, and unit cell parameters of some salts were determined from the powder X-ray patterns. The optical absorption spectra of the crystal-line plutonium compounds were measured. Thermal behavior in heating to 800°C in air was studied. The differences in the behavior of U, Np, and Pu compounds under similar conditions were noted. Original Russian Text N.N. Krot, I.A. Charushnikova, A.A. Bessonov, M.S. Grigor’ev, 2007, published in Radiokhimiya, 2007, Vol. 49, No. 3, pp. 202–206.  相似文献   

9.
The physicochemical properties of (1 − x)CsH2PO4/xSiP y O z (x = 0.2–0.7) composites containing fine-particle silicon phosphates as heterogeneous additives have been studied at different humidities. The introduction of silicon phosphates suppresses the superionic phase transition of CsH2PO4 and increases the low-temperature conductivity of the materials, which depends significantly on humidity. The CsH2PO4-SiP y O z materials offer high conductivity (∼3 × 10−3 to 10−2 S/cm at ∼110–230°C) at low water vapor pressures (3 mol % H2O). Amorphization of the CsH2PO4 in the composites markedly changes its thermodynamic properties. The effect of long-term isothermal holding (210°C, 3 mol % H2O) on the conductivity of the composites has been studied. Original Russian Text ? V.G. Ponomareva, E.S. Shutova, G.V. Lavrova, 2008, published in Neorganicheskie Materialy, 2008, Vol. 44, No. 9, pp. 1131–1136.  相似文献   

10.
Tantalum hydrogen phosphate, β-TaH(PO4)2, has a three-dimensional structure that is stable to remarkably high temperature (∼600 °C) presumably due to the presence of strong hydrogen bonds. Impedance measurements indicate a low conductivity, 2.0 × 10−6 S/cm at 200 °C in 5% H2. In further studies aimed at enhancing the conductivity by aliovalent doping, we have investigated systematically the synthesis of compounds in the TaH(PO4)2-W2P2O11 system at 380 °C. As a result, a new phase, Ta2(WO2)0.87H0.26(PO4)4, was identified and subsequently the molybdenum analog Ta2(MoO2)(PO4)4 was also prepared. The structures were determined by single crystal X-ray diffraction techniques. The structures of Ta2(WO2)0.87H0.26(PO4)4 and Ta2(MoO2)(PO4)4 can be formally derived from the structure of β-TaH(PO4)2 by the replacement of two P-OH protons with an MO22+ (M = Mo and W) group together with a change in the orientation of some phosphate tetrahedra.  相似文献   

11.
Single crystals of a new uranyl selenate, K(H5O2)[(UO2)2(SeO4)3(H2O)] (I), were prepared by isothermal evaporation at room temperature. The crystal structure of I was solved by the direct method (space group P21/c; a = 11.456(2), b = 10.231(1), c = 14.809(2) ?; β = 101.901(4)°, V = 1698.4(4) ?3; Z = 4) and refined to R 1 = 0.0547 (wR 2 = 0.0825) for 3375 reflections with |F o| ≥ 4σ F . The structure of I is based on layers of the composition [(UO2)2(SeO4)3(H2O)]2−. The charge of the inorganic layer is compensated by potassium and oxonium ions located in the interlayer space. Each potassium ion is coordinated by seven oxygen atoms belonging to uranyl selenate layers, including uranyl oxygen atoms, which leads to bending of uranyl selenate structural elements.  相似文献   

12.
The formation of BaCeO3 by a co-precipitation method is described herein. The co-precipitation route leads to an orange (BaCe)-precursor powder (1). To improve the sintering behaviour, a small amount of Ge4+ was incorporated, leading to a (BaCe0.95/Ge0.05)-precursor (2). Both precursor powders results in fine-grained preceramic powders (1A, 2A) after calcination. The shrinkage and sintering behaviour of resulting powder compacts were studied in comparison to a coarse-grained mixed-oxide BaCeO3 powder (3). Compacts of 2A reach a relative density of 90% after sintering at 1350 °C with grain sizes between 0.9 and 3.2 μm. On the other hand ceramics of 1A and 3 have, after sintering at 1500 °C (10 h), relative densities of 85 and 76%, respectively. Ceramic bodies of 1A consisted of phase-pure orthorhombic BaCeO3, whereas bodies of 2A show reflections of BaCeO3 and a Ba2GeO4 phase. DTA investigations of samples 1A and 2A reveal three phase transitions at 255 °C (1A) and 256 °C (2A) as well as 383 °C (1A) and 380 °C (2A). A very weak one can be obtained in the range 880–910 °C.  相似文献   

13.
Two newly synthesised Sr0.50SbFe(PO4)3 [Sr0.5.] and SrSb0.50Fe1.50(PO4)3 [Sr.] phases were obtained by conventional solid-state reaction techniques at 1000 °C in air atmosphere. Their crystallographic structures were determined at room temperature from X-ray powder diffraction (XRPD) data using the Rietveld analysis. Both compounds belong to the Nasicon structural family. [Sr0.5.] and [Sr.] crystallise in rhombohedral system with \textR[`3] {\text{R}}\overline{3} and \textR[`3] \textc {\text{R}}\overline{3} {\text{c}} space group, respectively. Hexagonal cell parameters for [Sr0.5.] and [Sr.] are: a = 8.227(1) ?, c = 22.767(2) ? and a = 8.339(1) ?, c = 22.704(2) ?, respectively. Sr2+ and vacancies in {[Sr0.50]3a[□0.50]3b}M1SbFe(PO4)3 are practically ordered within the two positions, 3a and 3b, of M1 sites. Structure refinements show also an ordered distribution of Sb5+ and Fe3+ ions within the Nasicon framework. Within the structure, each Sr(3a)O6 octahedron shares two faces with two Fe3+O6 octahedra and each vacancy (□(3b)O6) site is located between two Sb5+O6 octahedra. In [Sr]M1Sb0.50Fe1.50(PO4)3 compound, all M1 sites are occupied by Sr2+ and the Sb5+ and Fe3+ ions are randomly distributed within the Nasicon framework. A Raman and infrared spectroscopic study was used to obtain further structural information about the nature of bonding in both selected compositions.  相似文献   

14.
The formation of solid solutions of the type [Ba(HOC2H4OH)4][Ti1−x Ge x (OC2H4O)3] as Ba(Ti1−x /Ge x )O3 precursors and the phase evolution during thermal decomposition of [Ba(HOC2H4OH)4][Ti0.9Ge0.1(OC2H4O)3] (1) are described herein. The 1,2-ethanediolato complex 1 decomposes above 589 °C to a mixture of BaTiO3 and BaGeO3. A heating rate controlled calcination procedure, up to 730 °C, leads to a nm-sized Ba(Ti0.9/Ge0.1)O3 powder (1a) with a specific surface area of S = 16.9 m2/g, whereas a constant heating rate calcination at 1,000 °C for 2 h yields a powder (1b) of S = 3.0 m2/g. The shrinkage and sintering behaviour of the resulting Ba(Ti0.9/Ge0.1)O3 powder compacts in comparison with nm-sized BaTiO3 powder compacts (2a) has been investigated. A two-step sintering procedure of nm-sized Ba(Ti0.9/Ge0.1)O3 compacts (1a) leads, below 900 °C, to ceramic bodies with a relative density of ≥90%. Furthermore, the cubic ⇆ tetragonal phase transition temperature has been detected by dilatometry, and the temperature dependence of the dielectric constant (relative permittivity) has also been measured.  相似文献   

15.
In this work, a novel method of producing maghemite (γ-Fe2O3) nanopowders has been developed, which can be performed by the direct thermal decomposition of an Fe–urea complex ([Fe(CON2H4)6](NO3)3) in a single step. The reaction mechanism, particle morphology, and the magnetic properties of the γ-Fe2O3 nanopowders have been studied by using thermogravimetric (TG), differential scanning calorimetry (DSC), fourier transformed infrared (FTIR) spectroscopy, elemental analysis, X-ray powder diffraction (XRD), transmission electron micrograph (TEM) observations, and magnetic measurements. Thermal analyses together with the results of XRD show that the formation of γ-Fe2O3 occurs at ~200 °C through a two-stage thermal decomposition of the [Fe(CON2H4)6](NO3)3 complex. The resulting iron oxide phases (i.e., γ-Fe2O3 and α-Fe2O3) are strongly dependent on the synthesis conditions of the [Fe(CON2H4)6](NO3)3. When the molar ratio of Fe(NO3)3 · 9H2O to CON2H4 that is used for the synthesis of [Fe(CON2H4)6](NO3)3 is 1:6 (i.e., molar ratio in stoichiometry), a mixed phase of γ-Fe2O3 and α-Fe2O3 is formed. When the molar ratio is 1:6.2 (i.e., using an excess CON2H4), on the other hand, a pure γ-Fe2O3 is obtained. Magnetic measurements show that resulting nanopowders exhibit a ferromagnetic characteristic and their maximum saturation magnetization increases from 47.2 to 67.4 emu/g with an increase in the molar ratio of Fe(NO3)3 · 9H2O to CON2H4 from 1:6 to 1:6.2.  相似文献   

16.
A new binary Co1/2Fe1/2(H2PO4)2·2H2O was synthesized by a simple, rapid and cost-effective method using CoCO3-Fe(c)-H3PO4 system at ambient temperature. Thermal treatment of the obtained Co1/2Fe1/2(H2PO4)2·2H2O at 600 °C yielded as a binary cobalt iron cyclotetraphosphate CoFeP4O12. The FTIR and XRD results of the synthesized Co1/2Fe1/2(H2PO4)2·2H2O and its final decomposed product CoFeP4O12 indicate the monoclinic phases with space group P21/n and C2/c, respectively. The particle morphologies of both binary metal compounds appear the flower-like microparticle shapes. Room temperature magnetization results show novel superparamagnetic behaviors of the Co1/2Fe1/2(H2PO4)2·2H2O and its final decomposed product CoFeP4O12, having no hysteresis loops in the range of ±10,000 Oe with the specific magnetization values of 0.045 and 12.502 emu/g at 10 kOe, respectively. The dominant physical properties of the obtained binary metal compounds (Co1/2Fe1/2(H2PO4)2·2H2O and CoFeP4O12) are compared with the single compounds (M(H2PO4)2·2H2O and M2P4O12; where M = Co, Fe), indicating the presence of Co ions in substitution position of Fe ions.  相似文献   

17.
High compacted aluminum nitride (AlN) substrates were prepared by aqueous tape casting. Aluminium dihydrogen phosphate was used to modify AlN particle surface from hydrolysis during casting process. The absolute value of zeta potential for the AlN particle treated by Al(H2PO4)2 was 60mv at pH = 9. The slurry suitable for tape casting was prepared which possessed shear-thinning behavior and appropriate viscosity. The results showed that the green tapes own excellent properties including high bulk density, uniform pore distribution and low porosity. The samples were fired at 1700°C (lower than melting point of Pt) with pressureless sintering process which can be used to fabricate complex device.  相似文献   

18.
Phase relations in the ternary oxide system V2O5–Cr2O3–α-Sb2O4 in the solid state in the atmosphere of air have been investigated by using the XRD, DTA/TG and IRS methods. Obtained results have shown that in the system the compound CrSbVO6 is formed. This compound has been obtained both from oxides and from a mixture comprising CrSbO4, CrVO4 and SbVO5 as well as from mixtures: CrSbO4/V2O5, CrVO4/α-Sb2O4 and SbVO5/Cr2O3. A Solid product of incongruent melting of CrSbVO6 at ∼1300°C is Cr2O3. CrSbVO6 crystallizes in the tetragonal system and its calculated unit cell parameters amount to: a = b = 0.45719(12) nm, c = 0.30282(8) nm, Z = 2. The obtained results have allowed us also to divide the investigated system V2O5–Cr2O3–α-Sb2O4 into seven subsidiary subsystems and to determine temperatures and components concentration range in which CrSbVO6 remains at equilibrium in the solid state with other phases formed in corresponding binary systems.  相似文献   

19.
This study focuses on the use of cerium-based mixed oxides for hydrogen production by solar-driven thermochemical two-step water-splitting. Mixed cerium oxides are proposed in order to decrease the reduction temperature of ceria and to avoid material sublimation occurring above 2,000 °C during the high-temperature solar step. Ceria-based nanopowders were synthesized by soft chemistry methods including the modified Pechini method. The influence of the synthesis method, the type of cationic element mixed with cerium, and the content of this added element was investigated by comparing the reduction temperatures of the derived materials. The synthesized powders were characterized by X-ray diffraction, thermogravimetric analysis, SEM, and Raman spectroscopy. Results showed that the synthesized pure cerium oxide is more reactive toward reduction than a commercial powder. Among the different elements added to ceria that were screened, the addition of zirconium significantly improved the reduction of ceria at temperatures below 1,500 °C. Increasing zirconium content further favored cerium reduction yield up to 70%. Water-splitting tests were performed to demonstrate the reactivity of the developed materials for H2 production. The amount of H2 evolved was enhanced with a temperature increase, the maximum H2 production from Ce0.75Zr0.25O2−δ was 0.24 mmol/g at 1,045 °C, and the powder reactivity upon cycling was demonstrated via thermogravimetry through two successive reduction–hydrolysis reactions.  相似文献   

20.
The solid copper(I) electrolytes: CuTi2(PO4)3; CuTiZr(PO4)3; and CuZr2(PO4)3; were prepared as powders by high temperature synthesis and analysed by powder XRD. These materials were then annealed in air at 400 °C for 72 h. The results of powder XRD showed that the degree of oxidation under these conditions varies progressively and enormously across this series, with the passivity dependent upon the Ti/Zr ratio; CuTi2(PO4)3 being the least reactive under these conditions. The results of the thermogravimetric analyses in artificial air ( P\textO2 P_{{{\text{O}}_{2} }}  = 0.2 bar) corroborate with the above, and reveal in all cases that T eqm = 500 ± 25 °C for the reversible reaction: 4Cu (Ti, Zr)2(PO4)3 + O2 ⇆ 4Cu0.5 (Ti, Zr)2(PO4)3 + 2CuO. Green Cu0.5TiZr (PO4)3 has been prepared as a new compound and was shown to belong to a rhombohedral system with hexagonal cell constants: a = 8.599(1) ?; c = 22.355(3) ?; Z = 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号