首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mercury (Hg) concentration, reservoir mass, and Hg reservoir size were determined for vegetation components, litter, and mineral soil for two Sierran forest sites and one desert sagebrush steppe site. Mercury was found to be held primarily in the mineral soil (maximum depth of 60 to 100 cm), which contained more than 90% of the total ecosystem reservoir. However, Hg in foliage, bark, and litter plays a more dominant role in Hg cycling than the mineral soil. Mercury partitioning into ecosystem components at the Sierran forest sites was similar to that observed for other US forest sites. Vegetation and litter Hg reservoirs were significantly smaller in the sagebrush steppe system because of lower biomass. Data collected from these ecosystems after wildfire and prescribed burns showed a significant decrease in the Hg pool from certain reservoirs. No loss from mineral soil was observed for the study areas but data from fire severity points suggested that Hg in the upper few millimeters of surface soil may be volatilized due to exposure to elevated temperatures. Comparison of data from burned and unburned plots suggested that the only significant source of atmospheric Hg from the prescribed burn was combustion of litter. Differences in unburned versus burned Hg reservoirs at the forest wildfire site demonstrated that drastic reduction in the litter and above ground live biomass Hg reservoirs after burning had occurred. Sagebrush and litter were absent in the burned plots after a wildfire suggesting that both reservoirs were released during the fire. Mercury emissions due to fire from the forest prescribed burn, forest wildfire, and sagebrush steppe wildfire sites were roughly estimated at 2.0 to 5.1, 2.2 to 4.9, and 0.36+/-0.13 g ha(-1), respectively, with litter and vegetation being the most important sources.  相似文献   

2.
From July 1999 to January 2000, we determined the particulate mercury [Hg(p)] concentration in the atmosphere of five function sites and one contrast site in the city of Changchun, China. During non-heating season, the Hg(p) concentration in air in urban areas ranged from 0.022 to 0.398 ng m(-3) with an average of 0.145 ng m(-3), and at the contrast site with an average of 0.084 ng m(-3). During the heating season, the Hg(p) concentration in urban areas was in the range of 0.148-1.984 ng m(-3) with an average of 0.461 ng m(-3) and with an average of 0.211 ng m(-3) at the contrast site. The Hg(p) concentration during heating season is two times higher than that during non-heating time. Coal burning and wind-blown soil material are the two important sources of Hg(p). Wind-blown soil material contributes 7.9-38.5% to the Hg(p) with an average of 24.1% in urban area. A theoretical model was used to estimate the dry deposition flux, with results of 43.06 microg m(-2) a(-1) in the urban area and 21.28 microg m(-2) a(-1) at the contrast site.  相似文献   

3.
In the Brazilian Amazon, forest conversion to agricultural lands (slash-and-burn cultivation) contributes to soil mercury (Hg) release and to aquatic ecosystem contamination. Recent studies have shown that soil Hg loss occurs rapidly after deforestation, suggesting that Hg mobility could be related to the massive cation input resulting from biomass burning. The objective of this research was to determine the effects of the first year of slash-and-burn agriculture on soil Hg levels at the regional scale of the Tapajós River, in the state of Pará, Brazilian Amazon. A total of 429 soil samples were collected in 26 farms of five riparian communities of the Tapajós basin. In September 2004, soil samples were collected from primary forest sites planned for slash-and-burn cultivation. In August 2005, one year after the initial burning, a second campaign was held and the exact same sites were re-sampled. Our results showed that total Hg levels in soils did not change significantly during the first year following slash-and-burn, suggesting no immediate release of soil Hg at that point in time. However, an early Hg mobility was detected near the surface (0-5 cm), reflected by a significant shift in Hg distribution in soil fractions. Indeed, a transfer of Hg from fine to coarser soil particles was observed, indicating that chemical bonds between Hg and fine particles could have been altered. A correspondence analysis (CA) showed that this process could be linked to a chemical competition caused by cation enrichment. The regional dimension of the study highlighted the prevailing importance of soil types in Hg dynamics, as shown by differentiated soil responses following deforestation according to soil texture. Confirming an early Hg mobility and indicating an eventual Hg release out of the soil, our results reinforce the call for the development of more sustainable agricultural practices in the Amazon.  相似文献   

4.
This work presents a study on the formation of fire whirls with vertical axis on wildfires at laboratory scale. A particularity of the study is the use of typical forest fuels instead of fossil fuels as seen in some of previous studies on this topic. The forest fuels tested in the experiments were dead needles of Pinus pinaster, straw of Avena sativa, dead leaves of Eucalyptus globulus and a mix of shrubs mainly composed by heather (Erica australis) and gorse (Pterospartum tridentatum). The experimental results of the tests with and without forced flow inside a fire whirl generator were compared with tests in similar conditions out of the generator. It was possible to evaluate the effects of fuel bed size, bulk density and external vorticity on several parameters like flame height and diameter, mass decay and heat release rate. The results show that forced flow increases dramatically the burning rate and reduces the time needed to achieve a high rate of energy release. Comparison with results of other sources show that the flames that are generated in the present fire whirl generator are in a transition from fire whirl to pool fire regime and that it is possible to scale up some flow and thermal properties of field scale fire whirls and to derive predictive models on the basis of laboratory scale experiments.  相似文献   

5.
A series of smoke plumes was detected in Helsinki, Finland, during a one-month-lasting period in August 2006. The smoke plumes originated from wildfires close to Finland, and they were short-term and had a high particulate matter (PM) concentration. Physical and chemical properties of fine particles in those smokes were characterised by a wide range of real-time measurements that enabled the examination of individual plume events. Concurrently PM1 filter samples were collected and analysed off-line. Satellite observations employing MODIS sensor on board of NASA EOS Terra satellite with the dispersion model SILAM and the Fire Assimilation System were used for evaluation of the emission fluxes from wildfires. The model predicted well the timing of the plumes but the predicted PM concentrations differed from the observed. The measurements showed that the major growth in PM concentration was caused by submicrometer particles consisting mainly of particulate organic matter (POM). POM had not totally oxidised during the transport based on the low WSOC-to-OC ratio. The fresh plumes were compared to another major smoke episode that was observed in Helsinki during April-May 2006. The duration and the source areas of the two episode periods differed. The episode in April-May was a period of nearly constantly upraised level of long-range transported PM and it was composed of aged particles when arriving in Helsinki. The two episodes had differences also in the chemical composition of PM. The mass concentrations of biomass burning tracers (levoglucosan, potassium, and oxalate) increased during both the episodes but different concentration levels of elemental carbon and potassium indicated that the episodes differed in the form of burning as well as in the burning material. In spring dry crop residue and hay from the previous season were burnt whereas in August smokes from smouldering and incomplete burning of fresh vegetation were detected.  相似文献   

6.
Air-soil exchange of mercury from background soils in the United States   总被引:2,自引:0,他引:2  
The air-surface exchange of mercury (Hg) was measured, using a dynamic polycarbonate flux chamber, for soils with low or "background" Hg concentrations (<0.1 mg/kg) at eleven locations across the contiguous United States. Sampling locations included agricultural, desert, grassland, mixed and pine forest ecosystems (n=1326 soil flux measurements at 46 individual sites). An overall soil Hg flux of 0.9+/-0.2 ng/m2/h for these background soils was obtained by averaging the means for the different locations. Soil Hg fluxes were significantly lower in dark conditions than in the light for all but the grassland sites. Mean inlet air Hg concentrations were 1.0+/-0.1 ng/m3 in the dark and 1.3+/-0.2 ng/m3 in the light. Soil temperature inside and outside of the chamber, air temperature, relative humidity, and irradiance were measured concurrently with soil Hg flux. Soil-air Hg exchange was weakly predicted by environmental variables (R2 from 0.07 to 0.52). For a single location, flux was better correlated with soil moisture than other measured environmental parameters, suggesting that soil moisture might be an important driver for Hg emissions from background soils. In addition, based on data collected we suggest some quality control measures for use of Tekran 2537A analyzers when measuring low mercury fluxes. Using basic scaling procedures, we roughly estimate that natural emissions from soils in the contiguous U.S. release approximately 100 Mg/yr of Hg to the atmosphere.  相似文献   

7.
Modeling based on Spalding's theory was undertaken to obtain information on a solvent pool fire under atmosphere and ventilation in steady-state burning. The model comprised the modified B-number with burning parameters governing the burning rate of solvent. Mass loss rate and burning rate of solvent from the burning pan were governed by heat conduction through the pan wall for small pans and by turbulent free convective heat transfer for large pans.This paper will be published inFire Technology in two parts. Part II will appear in the August 1987 issue. Reference: Gunji Nishio and Satoru Machida, Pool Fires under Atmosphere and Ventilation in Steady-State Burning, Part I,Fire Technology, Vol. 23, No. 2, May 1987, pp. 146–155.  相似文献   

8.
Fire hazard has contributed to about one-third of world major accidents in chemical plants. One of the approaches to avoid or minimize fire hazard is by using an inherent safety concept. This concept is best implemented at the preliminary design stage. However, practical application of inherent safety is still limited due to non-availability of easy to use tool for direct application in a process plant. This paper addresses the above issue by proposing a prototype tool known as Inherent Fire Consequence Estimation Tool (IFCET) that can be used during preliminary design stage to eliminate or minimize the consequence of fire accidents. The tool is developed in MS Excel for pool fire model and linked with process design simulator, iCON. The functionality of the IFCET is demonstrated using case studies of flammable liquid leaked from a process stream and spilled of LPG during unloading at filling station. The results from the case studies show that IFCET can be used to eliminate or minimize the consequence due to pool fire during preliminary design stage. IFCET has a potential to be extended to include other types of fire accidents such as Jet Fire, BLEVE, etc.  相似文献   

9.
To characterize the burning dynamics of porous wildland fuels it is fundamental to understand the heat and mass transfer mechanisms. These are significantly different compared to solid fuels and less well documented. Radiation feedback from flames and convective heat transfer from forced airflow have been found to influence the pyrolysis and combustion processes. Smoldering combustion and resulting heat feedback is also shown to have significant impact. The link between burning dynamics and the oxygen availability is also explored. Combustion experiments are carried out using the FM Global Fire Propagation Apparatus in order to investigate changes in the burning behavior of porous fuel beds as a function of the oxygen availability. The oxygen flux into the combustion zone was varied by three mechanisms, (1) varying natural entrainment, (2) changing forced flow magnitude and (3) oxygen concentration. Results investigated from the combustion tests were the duration of flaming (from which the average burning rate was deduced), CO and CO2 generation rates, combustion efficiency and heat release rate. For both test series, the duration of flaming decreased and peak heat release rate increased with increasing oxygen flux. For tests with varying flow magnitude the combustion efficiency stayed constant with a CO/CO2 ratio below 1.5%. For tests with varying flow oxygen concentration the ratio was much higher, between 12% and 26%, indicating high levels of incomplete combustion. At a given oxygen flux, changes in heat flux feedback from the flames, convection cooling, and combustion efficiency were found to be the reason for differences on the order of 30–50% in burning rate and thus heat release rate. The intensity of smoldering increased with increasing oxygen flux equally for both tests series. The study explored herein provides insight into importance of several heat and mass transfer mechanisms that govern the burning dynamics of porous wildland fuel beds. Furthermore, it also highlights the necessity of understanding incomplete combustion (flaming) in the wildfire context.  相似文献   

10.
Two pool fire tests for solvent burning were made to obtain the burning rate and the mass loss rate from burning pans under atmosphere and ventilation in a cell. From the data, burning parameters for the Spalding's modified model reported in Part I were determined in steady-state pool burning.Part I of this paper was published in the May 1987 issue ofFire Technology. Reference: Gunji Nishio and Satoru Machida, Pool Fires under Atmosphere and Ventilation in Steady-State Burning, Part II,Fire Technology, Vol. 23, No. 3, August 1987, pp. 186–197.  相似文献   

11.
Diel variations of concentrations of unfiltered and filtered total Hg and filtered methyl Hg were documented during 24-h sampling episodes in water from Silver Creek, which drains a historical gold-mining district near Helena, Montana, and the Madison River, which drains the geothermal system of Yellowstone National Park. The concentrations of filtered methyl Hg had relatively large diel variations (increases of 68 and 93% from morning minima) in both streams. Unfiltered and filtered (0.1-microm filtration) total Hg in Silver Creek had diel concentration increases of 24% and 7%, respectively. In the Madison River, concentrations of unfiltered and filtered total Hg did not change during the sampling period. The concentration variation of unfiltered total Hg in Silver Creek followed the diel variation in suspended-particle concentration. The concentration variation of filtered total and methyl Hg followed the solar photocycle, with highest concentrations during the early afternoon and evening and lowest concentrations during the morning. None of the diel Hg variations correlated with diel variation in streamflow or major ion concentrations. The diel variation in filtered total Hg could have been produced by adsorption-desorption of Hg2+ or by reduction of Hg(II) to Hg0 and subsequent evasion of Hg0. The diel variation in filtered methyl Hg could have been produced by sunlight- and temperature-dependent methylation. This study is the first to examine diel Hg cycling in streams, and its results reinforce previous conclusions that diel trace-element cycling in streams is widespread but often not recognized and that parts of the biogeochemical Hg cycle respond quickly to the daily photocycle.  相似文献   

12.
Atmospheric mercury speciation in Yellowstone National Park   总被引:1,自引:0,他引:1  
Atmospheric concentrations of elemental mercury (Hg(0)), reactive gaseous Hg (RGM), and particulate Hg (pHg) concentrations were measured in Yellowstone National Park (YNP), U.S.A. using high resolution, real time atmospheric mercury analyzers (Tekran 2537A, 1130, and 1135). A survey of Hg(0) concentrations at various locations within YNP showed that concentrations generally reflect global background concentrations of 1.5-2.0 ng m(-3), but a few specific locations associated with concentrated geothermal activity showed distinctly elevated Hg(0) concentrations (about 9.0 ng m(-3)). At the site of intensive study located centrally in YNP (Canyon Village), Hg(0) concentrations did not exceed 2.5 ng m(-3); concentrations of RGM were generally below detection limits of 0.88 pg m(-3) and never exceeded 5 pg m(-3). Concentrations of pHg ranged from below detection limits to close to 30 pg m(-3). RGM and pHg concentrations were not correlated with any criteria gases (SO(2), NO(x), O(3)); however pHg was weakly correlated with the concentration of atmospheric particles. We investigated three likely sources of Hg at the intensive monitoring site: numerous geothermal features scattered throughout YNP, re-suspended soils, and wildfires near or in YNP. We examined relationships between the chemical properties of aerosols (as measured using real time, single particle mass spectrometry; aerosol time-of-flight mass spectrometer; ATOFMS) and concentrations of atmospheric pHg. Based on the presence of particles with distinct chemical signatures of the wildfires, and the absence of signatures associated with the other sources, we concluded that wildfires in the park were the main source of aerosols and associated pHg to our sampling site.  相似文献   

13.
Richter  Edward G.  Fischer  Erica C.  Metz  Amy  Wham  Brad P. 《Fire Technology》2022,58(4):1889-1915
Fire Technology - Wildland urban interface (WUI) communities in the Western United States have recently dealt with historic and devastating wildfires year after year. The fires have cost tens of...  相似文献   

14.
Since the prediction of ‘critical velocity’ is important to control the smoke in tunnel fires, many researches have been carried out to predict critical velocity with various fire sizes, tunnel shape, tunnel slope, and so forth. But few researches have been conducted to estimate critical ventilation velocity for varied burning rate by longitudinal ventilation, although burning rate of fuel is influenced by ventilation conditions. Therefore, there is a need to investigate the difference of upstream smoke layer (e.g., backlayering) between naturally ventilated heat release rate and varied heat release rate by longitudinal ventilation.In this study, the 1/20 reduced-scale experiments using Froude scaling are conducted to examine the difference of backlayering between naturally ventilated heat release rate and varied heat release rate by longitudinal ventilation. And the experimental results obtained are compared with numerical ones. Three-dimensional simulations of smoke flow in the tunnel fire with the measured burning rates have been carried out using Fire Dynamics Simulator; Ver. 406 code, which is developed by National Institute of Standards and Technology. They show a good degree of agreement, even if some deviation in temperature downstream of the fire is evident. Since ventilation velocity had a greater enhancing effect on the burning rate of fuel due to oxygen supply effect, the critical ventilation velocity should be calculated on the basis of varied HRR by ventilation velocity.  相似文献   

15.
Santa Monica Bay forms part of the western border of the greater Los Angeles region. The Ballona Creek watershed is highly urbanized and past studies indicate that Ballona Creek is the largest source for most pollutants to Santa Monica Bay. This study evaluates the contribution of subwatersheds to PCB and chlorinated pesticide loading during wet weather flow. Fifteen storm drains from these subwatersheds were sampled during three storms during the 2005-2006 winter rainy season. A series of grab samples were taken over the duration of the storms. The suspended solids were analyzed for polychlorinated biphenyls (PCBs) and chlorinated pesticides. A geographic information system (GIS) was used to calculate the runoff volume from each subwatershed to estimate pollution mass loading. There was no statistical difference among subswatersheds; however, a disproportionate mass of PCB loading came from site 5, which had no obvious sources. No specific subwatersheds were identified as key sources for chlorinated pesticides. These results may serve as a model for other locations with concerns for historic PCB and chlorinated pesticides loadings.  相似文献   

16.
We present input and output fluxes of total mercury (Hg(tot)) and methyl mercury (MeHg) based on throughfall, litterfall and stream water samples from 2004/2005 from a small forested catchment (Langtjern) in Norway. Hg(tot) input via throughfall and litterfall was estimated to 6.7 and 2.7 microg m(-2) yr(-1), respectively, which is considerably lower than previously reported from other boreal catchments in Scandinavia. A likely cause for the low input flux is the sparseness and low productivity of the forest in the Langtjern catchment, with less atmospheric scavenging and lower litterfall fluxes than previously studied sites. In addition there has been a general decrease in mercury (Hg) in the atmosphere on the northern hemisphere in the last decade. The estimated output flux of Hg(tot) with surface water was 2.5 microg m(-2) yr(-1), which is comparable to what has been reported elsewhere. The ratio of Hg(tot) output flux to input flux was 26%, which is considerably higher than reported from other sites. This illustrates that catchment properties have greater importance for surface water export of Hg than the current atmospheric input. The estimated total soil pool of Hg(tot) in the catchment was 17.4 mg m(-2). This corresponds to roughly 8000 years of the current surface water output flux and 2000 years of the current input flux.  相似文献   

17.
Four full-scale fire experiments using 4-door sedan passenger cars were carried out. The cars were ignited either at the splashguard of the right rear wheel or at the left front seat in the passenger compartment with a gasoline spill. The temperature inside the burning car and the mass loss rate were measured. The burning of the 4-door sedan was composed of three compartmental fires: the engine compartment, the passenger compartment, and the rear part inclusive of the fuel. In the experiments where ignition was initiated at the splashguard, the flame spread in the following order: to the rear part of the car, to the passenger compartment, and to the engine compartment. Breakage of the window glass markedly affected the spread of fire into the passenger compartment. The quantity of gasoline in the fuel tank also affected the speed of spread of the fire, because the gasoline ignited at an early stage of the fire. In the experiment where ignition was initiated in the passenger compartment, the fire gained force after the windshield was broken entirely. The flame spread in the following order: to the passenger compartment, to the engine compartment, and to the rear part of the car. The temperature within the passenger compartment peaked at 1000 °C. The heat release rate (HRR) curves showed several peaks depending on the burning of the three compartments. The HRR increased markedly when the fire spread to several different parts of the car at the same time. The HHR peaked at 3 MW when the passenger compartment and fuel (gasoline) burned simultaneously. The measured HRR curves were characterized by superposition of a Boltzmann curve and a Gaussian curve in order to obtain a model, which allowed us to make a more precise prediction of the fire spread probability from a burning car to nearby structures. The HRRs of burning cars were described by the sum of HRR from each compartment.  相似文献   

18.
Mercury contamination associated with small-scale gold mining and processing represents a major environmental and human health concern in Eastern and Southern Africa. Approximately 200,000-300,000 persons are involved in small-scale gold mining activities in Tanzania and > 200,000 persons in Zimbabwe. Mercury (Hg) is used mainly for the processing of primary gold quartz veins and supergene gold mineralizations. Gravimetric material flow analyses show that 70-80% of the Hg is lost to the atmosphere during processing, 20-30% are lost to tailings, soils, stream sediments and water. For every 1 g Au produced, 1.2-1.5 g Hg are lost to the environment. Cumulatively, the anthropogenic Hg released annually into the atmosphere is approximately 3-4 t in the whole Lake Victoria Goldfields of Tanzania and > 3 t in Zimbabwe. Tailings are local 'hot spots' with high concentrations of As, Pb, Cu and Hg. Lateral and vertical dispersion of Hg lost to soils and stream sediments is very limited (laterally < 260 m, vertically < 20 cm). Dispersion of mercury from tailings is low because Hg is transported largely in the elemental, metallic form. In addition, Fe-oxide rich laterites and swamps appear to be natural barriers for the dispersion of metals in soils and streams. Ground and surface water quality data indicate very low dispersion rates during the dry season.  相似文献   

19.
Three full-scale burning tests were conducted in a natural ventilation city road tunnel with shafts. Fire sources were placed to be at different locations but its peak release heats were all around 5 MW. Results showed that large amounts of smoke and heat were released through shafts. The maximum smoke temperatures under the ceiling were below than 100 °C, and being lower than 110 °C at the safe height farther 3 m away from fires. The maximum smoke spreading horizontal lengths were less than 240 m both in the upwind and downwind. During the late stages, many smoke particles descended from the ceiling and downdraught occurred at shafts due to low smoke temperatures, but the visibility was not very bad and people needn’t evacuate. All These results are valuable for fire protection and construction of natural ventilation road tunnel with shafts.  相似文献   

20.
Various ways exist to represent a design fire curve for tunnels. These can include different fire growth rates or combinations of fire growth rates with constant levels of heat release rate (HRR) coupled to a decay period. This means that the curve has to be represented with different mathematical expressions for different time periods. A more convenient way is to describe the design fire curve with a single mathematical expression. Such a curve has been presented by the author (H. Ingason, Fire development in large tunnel fires, 8th International Symposium on Fire Safety Science, Beijing, China, 18–23 September 2005, pp. 1497–1508), but it does not include a constant HRR period. This paper presents a new, single exponential, design fire curve with a constant maximum HRR. A presentation of available design curves is given as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号