首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A review on the combination of binary classifiers in multiclass problems   总被引:1,自引:0,他引:1  
Several real problems involve the classification of data into categories or classes. Given a data set containing data whose classes are known, Machine Learning algorithms can be employed for the induction of a classifier able to predict the class of new data from the same domain, performing the desired discrimination. Some learning techniques are originally conceived for the solution of problems with only two classes, also named binary classification problems. However, many problems require the discrimination of examples into more than two categories or classes. This paper presents a survey on the main strategies for the generalization of binary classifiers to problems with more than two classes, known as multiclass classification problems. The focus is on strategies that decompose the original multiclass problem into multiple binary subtasks, whose outputs are combined to obtain the final prediction.  相似文献   

2.
The simultaneous use of multiple classifiers has been shown to provide performance improvement in classification problems. The selection of an optimal set of classifiers is an important part of multiple classifier systems and the independence of classifier outputs is generally considered to be an advantage for obtaining better multiple classifier systems. In this paper, the need for the classifier independence is interrogated from classification performance point of view. The performance achieved with the use of classifiers having independent joint distributions is compared to some other classifiers which are defined to have best and worst joint distributions. These distributions are obtained by formulating the combination operation as an optimization problem. The analysis revealed several important observations about classifier selection which are then used to analyze the problem of selecting an additional classifier to be used with the available multiple classifier system.  相似文献   

3.
In this paper, we treat the problem of combining fingerprint and speech biometric decisions as a classifier fusion problem. By exploiting the specialist capabilities of each classifier, a combined classifier may yield results which would not be possible in a single classifier. The Feedforward Neural Network provides a natural choice for such data fusion as it has been shown to be a universal approximator. However, the training process remains much to be a trial-and-error effort since no learning algorithm can guarantee convergence to optimal solution within finite iterations. In this work, we propose a network model to generate different combinations of the hyperbolic functions to achieve some approximation and classification properties. This is to circumvent the iterative training problem as seen in neural networks learning. In many decision data fusion applications, since individual classifiers or estimators to be combined would have attained a certain level of classification or approximation accuracy, this hyperbolic functions network can be used to combine these classifiers taking their decision outputs as the inputs to the network. The proposed hyperbolic functions network model is first applied to a function approximation problem to illustrate its approximation capability. This is followed by some case studies on pattern classification problems. The model is finally applied to combine the fingerprint and speaker verification decisions which show either better or comparable results with respect to several commonly used methods.  相似文献   

4.
现有概念漂移处理算法在检测到概念漂移发生后,通常需要在新到概念上重新训练分类器,同时“遗忘”以往训练的分类器。在概念漂移发生初期,由于能够获取到的属于新到概念的样本较少,导致新建的分类器在短时间内无法得到充分训练,分类性能通常较差。进一步,现有的基于在线迁移学习的数据流分类算法仅能使用单个分类器的知识辅助新到概念进行学习,在历史概念与新到概念相似性较差时,分类模型的分类准确率不理想。针对以上问题,文中提出一种能够利用多个历史分类器知识的数据流分类算法——CMOL。CMOL算法采取分类器权重动态调节机制,根据分类器的权重对分类器池进行更新,使得分类器池能够尽可能地包含更多的概念。实验表明,相较于其他相关算法,CMOL算法能够在概念漂移发生时更快地适应新到概念,显示出更高的分类准确率。  相似文献   

5.
New Applications of Ensembles of Classifiers   总被引:2,自引:0,他引:2  
Combination (ensembles) of classifiers is now a well established research line. It has been observed that the predictive accuracy of a combination of independent classifiers excels that of the single best classifier. While ensembles of classifiers have been mostly employed to achieve higher recognition accuracy, this paper focuses on the use of combinations of individual classifiers for handling several problems from the practice in the machine learning, pattern recognition and data mining domains. In particular, the study presented concentrates on managing the imbalanced training sample problem, scaling up some preprocessing algorithms and filtering the training set. Here, all these situations are examined mainly in connection with the nearest neighbour classifier. Experimental results show the potential of multiple classifier systems when applied to those situations.  相似文献   

6.
The rapid advances in hyperspectral sensing technology have made it possible to collect remote-sensing data in hundreds of bands. However, the data-analysis methods that have been successfully applied to multispectral data are often limited in achieving satisfactory results for hyperspectral data. The major problem is the high dimensionality, which deteriorates the classification due to the Hughes Phenomenon. In order to avoid this problem, a large number of algorithms have been proposed, so far, for feature reduction. Based on the concept of multiple classifiers, we propose a new schema for the feature selection procedure. In this framework, instead of using feature selection for whole classes, we adopt feature selection for each class separately. Thus different subsets of features are selected at the first step. Once the feature subsets are selected, a Bayesian classifier is trained on each of these feature subsets. Finally, a combination mechanism is used to combine the outputs of these classifiers. Experiments are carried out on an Airborne Visible/Infrared Imaging Spectroradiometer (AVIRIS) data set. Encouraging results have been obtained in terms of classification accuracy, suggesting the effectiveness of the proposed algorithms.  相似文献   

7.
8.
多标签代价敏感分类集成学习算法   总被引:12,自引:2,他引:10  
付忠良 《自动化学报》2014,40(6):1075-1085
尽管多标签分类问题可以转换成一般多分类问题解决,但多标签代价敏感分类问题却很难转换成多类代价敏感分类问题.通过对多分类代价敏感学习算法扩展为多标签代价敏感学习算法时遇到的一些问题进行分析,提出了一种多标签代价敏感分类集成学习算法.算法的平均错分代价为误检标签代价和漏检标签代价之和,算法的流程类似于自适应提升(Adaptive boosting,AdaBoost)算法,其可以自动学习多个弱分类器来组合成强分类器,强分类器的平均错分代价将随着弱分类器增加而逐渐降低.详细分析了多标签代价敏感分类集成学习算法和多类代价敏感AdaBoost算法的区别,包括输出标签的依据和错分代价的含义.不同于通常的多类代价敏感分类问题,多标签代价敏感分类问题的错分代价要受到一定的限制,详细分析并给出了具体的限制条件.简化该算法得到了一种多标签AdaBoost算法和一种多类代价敏感AdaBoost算法.理论分析和实验结果均表明提出的多标签代价敏感分类集成学习算法是有效的,该算法能实现平均错分代价的最小化.特别地,对于不同类错分代价相差较大的多分类问题,该算法的效果明显好于已有的多类代价敏感AdaBoost算法.  相似文献   

9.
Multi-class classification is one of the major challenges in real world application. Classification algorithms are generally binary in nature and must be extended for multi-class problems. Therefore, in this paper, we proposed an enhanced Genetically Optimized Neural Network (GONN) algorithm, for solving multi-class classification problems. We used a multi-tree GONN representation which integrates multiple GONN trees; each individual is a single GONN classifier. Thus enhanced classifier is an integrated version of individual GONN classifiers for all classes. The integrated version of classifiers is evolved genetically to optimize its architecture for multi-class classification. To demonstrate our results, we had taken seven datasets from UCI Machine Learning repository and compared the classification accuracy and training time of enhanced GONN with classical Koza’s model and classical Back propagation model. Our algorithm gives better classification accuracy of almost 5% and 8% than Koza’s model and Back propagation model respectively even for complex and real multi-class data in lesser amount of time. This enhanced GONN algorithm produces better results than popular classification algorithms like Genetic Algorithm, Support Vector Machine and Neural Network which makes it a good alternative to the well-known machine learning methods for solving multi-class classification problems. Even for datasets containing noise and complex features, the results produced by enhanced GONN is much better than other machine learning algorithms. The proposed enhanced GONN can be applied to expert and intelligent systems for effectively classifying large, complex and noisy real time multi-class data.  相似文献   

10.
Many applications of remote sensing only require the classification of a single land type. This is known as the one-class classification problem and it can be performed using either binary classifiers, by treating all other classes as the negative class, or one-class classifiers which only consider the class of interest. The key difference between these two approaches is in their training data and the amount of effort needed to produce it. Binary classifiers require an exhaustively labelled training data set while one-class classifiers are trained using samples of just the class of interest. Given ample and complete training data, binary classifiers generally outperform one-class classifiers. However, what is not clear is which approach is more accurate when given the same amount of labelled training data. That is, for a fixed labelling effort, is it better to use a binary or one-class classifier. This is the question we consider in this article. We compare several binary classifiers, including backpropagation neural networks, support vector machines, and maximum likelihood classifiers, with two one-class classifiers, one-class SVM, and presence and background learning (PBL), on the problem of one-class classification in high-resolution remote sensing imagery. We show that, given a fixed labelling budget, PBL consistently outperforms the other methods. This advantage stems from the fact that PBL is a positive-unlabelled method in which large amounts of readily available unlabelled data is incorporated into the training phase, allowing the classifier to model the negative class more effectively.  相似文献   

11.
It has been widely accepted that the classification accuracy can be improved by combining outputs of multiple classifiers. However, how to combine multiple classifiers with various (potentially conflicting) decisions is still an open problem. A rich collection of classifier combination procedures-many of which are heuristic in nature-have been developed for this goal. In this brief, we describe a dynamic approach to combine classifiers that have expertise in different regions of the input space. To this end, we use local classifier accuracy estimates to weight classifier outputs. Specifically, we estimate local recognition accuracies of classifiers near a query sample by utilizing its nearest neighbors, and then use these estimates to find the best weights of classifiers to label the query. The problem is formulated as a convex quadratic optimization problem, which returns optimal nonnegative classifier weights with respect to the chosen objective function, and the weights ensure that locally most accurate classifiers are weighted more heavily for labeling the query sample. Experimental results on several data sets indicate that the proposed weighting scheme outperforms other popular classifier combination schemes, particularly on problems with complex decision boundaries. Hence, the results indicate that local classification-accuracy-based combination techniques are well suited for decision making when the classifiers are trained by focusing on different regions of the input space.  相似文献   

12.
《Information Fusion》2007,8(3):252-265
This work developed and demonstrated a machine learning approach for robust ATR. The primary innovation of this work was the development of an automated way of developing inference rules that can draw on multiple models and multiple feature types to make robust ATR decisions. The key realization is that this “meta learning” problem is one of structural learning, and that it can be conducted independently of parameter learning associated with each model and feature based technique. This was accomplished by using a learning classifier system, which is based on genetics-based machine learning, for the ill conditioned combinatorial problem of structural rule learning, while using statistical and mathematical techniques for parameter learning.This system was tested on MSTAR Public Release SAR data using standard and extended operation conditions. These results were also compared against two baseline classifiers, a PCA based distance classifier and a MSE classifier. The classifiers were evaluated for accuracy (via training set classification) and robustness (via testing set classification). In both cases, the LCS based robust ATR system performed well with accuracy over 99% and robustness over 80%.  相似文献   

13.
王鑫  李可  徐明君  宁晨 《计算机应用》2019,39(2):382-387
针对传统的基于深度学习的遥感图像分类算法未能有效融合多种深度学习特征,且分类器性能欠佳的问题,提出一种改进的基于深度学习的高分辨率遥感图像分类算法。首先,设计并搭建一个七层卷积神经网络;其次,将高分辨率遥感图像样本输入到该网络中进行网络训练,得到最后两个全连接层输出作为遥感图像两种不同的高层特征;再次,针对该网络第五层池化层输出,采用主成分分析(PCA)进行降维,作为遥感图像的第三种高层特征;然后,将上述三种高层特征通过串联的形式进行融合,得到一种有效的基于深度学习的遥感图像特征;最后,设计了一种基于逻辑回归的遥感图像分类器,可以对遥感图像进行有效分类。与传统基于深度学习的遥感图像分类算法相比,所提算法分类准确率有较高提升。实验结果表明,该算法在分类准确率、误分类率和Kappa系数上表现优异,能实现良好的分类效果。  相似文献   

14.
An ensemble of multiple classifiers is widely considered to be an effective technique for improving accuracy and stability of a single classifier. This paper proposes a framework of sparse ensembles and deals with new linear weighted combination methods for sparse ensembles. Sparse ensemble is to sparsely combine the outputs of multiple classifiers by using a sparse weight vector. When the continuous outputs of multiple classifiers are provided in our methods, the problem of solving sparse weight vector can be formulated as linear programming problems in which the hinge loss or/and the 1-norm regularization are exploited. Both the hinge loss and the 1-norm regularization are techniques inducing sparsity used in machine learning. We only ensemble classifiers with nonzero weight coefficients. In these LP-based methods, the ensemble training error is minimized while the weight vector of ensemble learning is controlled, which can be thought as implementing the structure risk minimization rule and naturally explains good performance of these methods. The promising experimental results over UCI data sets and the radar high-resolution range profile data are presented.  相似文献   

15.
多分类问题代价敏感AdaBoost算法   总被引:8,自引:2,他引:6  
付忠良 《自动化学报》2011,37(8):973-983
针对目前多分类代价敏感分类问题在转换成二分类代价敏感分类问题存在的代价合并问题, 研究并构造出了可直接应用于多分类问题的代价敏感AdaBoost算法.算法具有与连续AdaBoost算法 类似的流程和误差估计. 当代价完全相等时, 该算法就变成了一种新的多分类的连续AdaBoost算法, 算法能够确保训练错误率随着训练的分类器的个数增加而降低, 但不直接要求各个分类器相互独立条件, 或者说独立性条件可以通过算法规则来保证, 但现有多分类连续AdaBoost算法的推导必须要求各个分类器相互独立. 实验数据表明, 算法可以真正实现分类结果偏向错分代价较小的类, 特别当每一类被错分成其他类的代价不平衡但平均代价相等时, 目前已有的多分类代价敏感学习算法会失效, 但新方法仍然能 实现最小的错分代价. 研究方法为进一步研究集成学习算法提供了一种新的思路, 得到了一种易操作并近似满足分类错误率最小的多标签分类问题的AdaBoost算法.  相似文献   

16.
基于支持向量机和距离度量的纹理分类   总被引:9,自引:1,他引:9       下载免费PDF全文
针对图象纹理分类问题,提出了一种将支持向量机和距离度量相结合,以构成两级组合分类器的分类方法,用该方法分类时,先采用距离度量进行前级分类,然后根据图象的纹理统计特征,采用欧氏距离来度量图象之间的相似性,若符合条件,则给出分类结果,否则拒识,并转入后级分类器,而后级分类器则采用一种新的模式分类方法-支持向量机进行分类,该组合分类方法不仅充分利用了支持向量机识别率高和距离度量速度快的优点,并且还利用距离度量的结果去指导支持向量机的训练和测试,由纹理图象分类的实验表明,该算法具有较高的效率和识别精度,同时也对推动支持向量机这一新的模式分类方法的实际应用具有积极意义。  相似文献   

17.
Existing classification algorithms use a set of training examples to select classification features, which are then used for all future applications of the classifier. A major problem with this approach is the selection of a training set: a small set will result in reduced performance, and a large set will require extensive training. In addition, class appearance may change over time requiring an adaptive classification system. In this paper, we propose a solution to these basic problems by developing an on-line feature selection method, which continuously modifies and improves the features used for classification based on the examples provided so far. The method is used for learning a new class, and to continuously improve classification performance as new data becomes available. In ongoing learning, examples are continuously presented to the system, and new features arise from these examples. The method continuously measures the value of the selected features using mutual information, and uses these values to efficiently update the set of selected features when new training information becomes available. The problem is challenging because at each stage the training process uses a small subset of the training data. Surprisingly, with sufficient training data the on-line process reaches the same performance as a scheme that has a complete access to the entire training data.  相似文献   

18.
针对卷积神经网络提取特征信息不完整导致图像分类方法分类精度不高等问题,利用深度学习的方法搭建卷积神经网络模型框架,提出一种基于迭代训练和集成学习的图像分类方法。利用数据增强对图像数据集进行预处理操作,在提取图像特征时,采用一种迭代训练卷积神经网络的方式,得到充分有效的图像特征,在训练分类器时,采用机器学习中集成学习的思想。分别在特征提取后训练分类器,根据各分类器贡献的大小,赋予它们不同的权重值,取得比单个分类器更好的性能,提高图像分类的精度。该方法在Stanford Dogs、UEC FOOD-100和CIFAR-100数据集上的实验结果表明了其较好的分类性能。  相似文献   

19.
Classification is the most used supervized machine learning method. As each of the many existing classification algorithms can perform poorly on some data, different attempts have arisen to improve the original algorithms by combining them. Some of the best know results are produced by ensemble methods, like bagging or boosting. We developed a new ensemble method called allocation. Allocation method uses the allocator, an algorithm that separates the data instances based on anomaly detection and allocates them to one of the micro classifiers, built with the existing classification algorithms on a subset of training data. The outputs of micro classifiers are then fused together into one final classification. Our goal was to improve the results of original classifiers with this new allocation method and to compare the classification results with existing ensemble methods. The allocation method was tested on 30 benchmark datasets and was used with six well known basic classification algorithms (J48, NaiveBayes, IBk, SMO, OneR and NBTree). The obtained results were compared to those of the basic classifiers as well as other ensemble methods (bagging, MultiBoost and AdaBoost). Results show that our allocation method is superior to basic classifiers and also to tested ensembles in classification accuracy and f-score. The conducted statistical analysis, when all of the used classification algorithms are considered, confirmed that our allocation method performs significantly better both in classification accuracy and f-score. Although the differences are not significant for each of the used basic classifier alone, the allocation method achieved the biggest improvements on all six basic classification algorithms. In this manner, allocation method proved to be a competitive ensemble method for classification that can be used with various classification algorithms and can possibly outperform other ensembles on different types of data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号