共查询到19条相似文献,搜索用时 171 毫秒
1.
针对传统基于相似度的离群点检测算法在高维不均衡数据集上效果不够理想的问题,提出一种新颖的基于随机投影与集成学习的离群点检测(ensemble learning and random projection-based outlier detection,EROD)框架。算法首先集成多个随机投影方法对高维数据进行降维,提升数据多样性;然后集成多个不同的传统离群点检测器构建异质集成模型,增加算法鲁棒性;最后使用异质模型对降维后的数据进行训练,训练后的模型经过两次优化组合以降低泛化误差,输出最终的对象离群值,离群值高的对象被算法判定为离群点。分别在四个不同领域的高维不均衡真实数据集上进行对比实验,结果表明该算法与传统离群点检测算法和基于集成学习的离群点检测算法相比,在AUC和precision@n值上平均提高了3.6%和14.45%,证明EROD算法具有处理高维不均衡数据异常的优势。 相似文献
2.
针对基于自编码器的离群点检测算法在中小规模数据集上易过拟合以及传统的基于集成学习的离群点检测算法未对基检测器进行优化选择而导致的检测精度低的问题,提出了一种基于自编码器与集成学习的离群点检测(EAOD)算法。首先,随机改变自编码器的连接结构来生成不同的基检测器,以获取数据对象的离群值和标签离群值;然后,通过最近邻算法计算数据对象之间的欧氏距离,并在对象周围构建局部区域;最后,根据离群值与标签离群值之间的相似度,选择在该区域内检测能力强的基检测器进行组合,组合后的对象离群值作为EAOD算法最终判定的离群值。在实验中,所提算法与自编码器(AE)算法相比,在Cardio数据集上,接受者操作特征曲线下方的面积(AUC)和平均精度(AP)分值分别提高了8.08个百分点和9.17个百分点;所提算法与特征装袋(FB)集成学习算法相比,在Mnist数据集上,运行时间成本降低了21.33%。实验结果表明,在无监督学习下所提算法具有良好的检测性能和检测实时性。 相似文献
3.
基于空间约束的离群点挖掘 总被引:1,自引:0,他引:1
由于现有的空间离群点检测算法没有很好地解决空间数据的自相关性和异质性约束问题,提出用计算邻域距离的方法解决空间自相关性约束问题,用计算空间局部离群系数的方法解决空间异质性约束问题。用离群系数表示对象的离群程度,并将离群系数按降序排列,取离群系数最大的前m个对象为离群点,据此提出基于空间约束的离群点挖掘算法。实验结果表明,所提算法比已有算法具有更高的检测精度、更低的用户依赖性和更高的效率。 相似文献
4.
5.
6.
局部离群点挖掘算法研究 总被引:14,自引:0,他引:14
离群点可分为全局离群点和局部离群点.在很多情况下,局部离群点的挖掘比全局离群点的挖掘更有意义.现有的基于局部离群度的离群点挖掘算法存在检测精度依赖于用户给定的参数、计算复杂度高等局限.文中提出将对象属性分为固有属性和环境属性,用环境属性确定对象邻域、固有属性计算离群度的方法克服上述局限;并以空间数据为例,将空间属性与非空间属性分开,用空间属性确定空间邻域,用非空间属性计算空间离群度,设计了空间离群点挖掘算法.实验结果表明,所提算法具有对用户依赖性少、检测精度高、可伸缩性强和运算效率高的优点. 相似文献
7.
离群点检测是数据挖掘领域的一个重要分支,当前数据流的离群点检测研究越来越受到关注.为了快速准确地检测出数据流中离群点,提出一种在线数据流离群点检测算法ODDS(outlier detection in online data stream s).它利用数据与频繁模式的相异程度来度量数据的离群程度,通过构建ODDS-Tree树,能动态地更新数据流中候选离群点的离群信息.实验结果验证了该算法与其他同类算法相比具有较高的效率与优良的可扩展性能. 相似文献
8.
基于距离和基于密度的离群点检测算法受到维度和数据量伸缩性的挑战, 而空间数据的自相关性和异质性决定了以属性相互独立和分类属性的基于信息理论的离群点检测算法也难以适应空间离群点检测, 因此提出了基于全息熵的混合属性空间离群点检测算法。算法利用区域标志属性进行区域划分, 在区域内利用空间关系确定空间邻域, 并用R*-树进行检索。在此基础上提出了基于全息熵的空间离群度的度量方法和空间离群点挖掘算法, 有效解决了混合属性的离群度的度量和离群点的挖掘问题。由于实现区域划分有利于并行计算, 从而可适应大数据量的计算。理论和实验证明, 所提算法在计算效率和实验结果的可解释性方面均具有优势。 相似文献
9.
针对高校学生工作者任务繁多且直接管理的学生人数众多,难于对每个学生进行个性化的学习指导的实际问题,提出基于离群点检测的学生学习状态分析方法,将有限的教育资源分配给最迫切需求的学生。使用基于密度的局部离群点检测算法对学生考试成绩数据进行挖掘,找出可疑离群学生,然后对可疑离群学生进行学习状态分析。案例研究结果表明,本方法能够有效地找出学习状态异常的学生,可以提升高校学生工作者的管理效率。 相似文献
10.
无线网络动态数据完整性呈非线性分布,数据结构较为复杂,完整性检测效果较差.为此,设计基于离群点检测算法的无线网络动态数据完整性检测方法.设计离群点检测算法动态数据生成层的数据组结构,据此得到机器计量数据学习离群点,根据数据学习离群点位置,计算动态数据完整性检测指标.构建动态数据完整性检测算法,完成无线网络动态数据完整性... 相似文献
11.
本文提出了一种个性化垃圾邮件过滤方法,它能够根据用户反馈自动学习出用户兴趣,并随时间的推移自动适应用户兴趣的变化。该方法首先抽取邮件的语言特征和行为特征构建多个基于规则的单独过滤器,然后采用SVM集成学习方法组合这些单独过滤器的结果。为了提高学习速度、减少用户提供反馈的数量,本文采用了主动学习方法挑选更加富含知识的邮件请求用户给出反馈。实验结果表明:集成学习和主动学习相结合的个性化过滤方法在个性化程度、分类准确率、过滤速度以及自动学习能力等方面具有更好的性能。 相似文献
12.
二次集成学习在医疗数据挖掘中的应用 总被引:1,自引:0,他引:1
CCDM 2014数据挖掘竞赛基于医学诊断数据,提出了实际生活中广泛出现的多类标问题和多类分类问题。针对两个问题出现的类别不平衡现象以及训练样本较少等特点,为了更好地完成数据挖掘任务,借助二次学习和集成学习的思想,提出了一个新的学习框架--二次集成学习。该学习框架通过首次集成学习得到若干置信度较高的样本,将其加入到原始训练集,并在新的训练集上进行二次学习,进而得到泛化性能更高的分类器。竞赛结果表明,与常用的集成学习相比,二次集成学习在两个问题上均取得了非常理想的结果。 相似文献
13.
入侵检测是近年来网络安全研究的热点。利用多分类器技术,研究了基于集成学习的入侵检测方法。应用Bootstrap技术生成分类器个体,为了提高分类器的差异性,应用聚类技术对分类器进行聚类,在相应的聚类结果中选取不同的分类器个体,并选择不同的融合方法对分类结果进行融合。针对入侵检测数据的实验表明了该集成技术的有效性。 相似文献
14.
提出了一种基于多示例学习(multi-instance learning,MIL)的局部离群点检测算法,称之为MIL-LOF(a local outlier factor based on multi-instance learning).算法采用MIL框架,首先将真实对象提取为多示例形式,然后运用退化策略和权重调整方法,计算综合离群点因子,最后检测离群点.在实际企业监控数据以及公共数据集上将MIL-LOF与经典局部离群点检测算法及其优化算法进行了对比实验,结果表明本文提出的MIL-LOF算法在准确性、全面性及高效性上相对其他算法均可获得较为明显的提高. 相似文献
15.
分析了神经网络集成泛化误差、个体神经网络泛化误差、个体神经网络差异度之间的关系,提出了一种个体神经网络主动学习方法.个体神经网络同时交互训练,既满足了个体神经网络的精度要求,又满足了个体神经网络的差异性要求.另外,给出了一种个体神经网络选择性集成方法,对个体神经网络加入偏置量,增加了个体神经网络的可选数量,降低了神经网络集成的泛化误差.理论分析和实验结果表明,使用这种个体神经网络训练方法、个体神经网络选择性集成方法能够构建有效的神经网络集成系统. 相似文献
16.
17.
对医疗数据库中存在的离散数据进行检测时,由于缺少数据过滤等过程而导致检测执行时间较长、检测效率低、离散点检测率低等问题,为此提出基于层次化深度学习的医疗数据库离散数据检测算法.首先,采用动态网格划分法划分空间中的稀疏区域和稠密区域,降低数据检测的规模,缩短检测执行时间;然后,通过层次化深度学习过程融合专家知识和数据的属性取值分布信息,实现医疗数据库中离散数据的检测.实验结果表明,该算法可以在较短的时间内准确完成医疗数据库中离散数据的检测,且相较于传统算法来说更具有应用优势. 相似文献
18.
随着国内通信市场逐渐饱和, 电信运营商之间的竞争日趋激烈. 用户流失预测已成为电信运营商最关注的问题之一. 本文提出一种基于多模型融合的方法创建用户离网预测模型. 首先, 将原始训练数据经过有放回采样和正负样本平衡得到多份不同的训练数据; 然后, 利用多份不同的训练数据使用集成学习与深度学习算法训练得到多个基础模型; ... 相似文献
19.
近年来,低级别微结构特征已被广泛应用于恶意软件检测。但是,微结构特征数据通常包含大量的冗余信息,且目前的检测方法并没有对输入微结构数据进行有效地预处理,这就造成恶意软件检测需要依赖于复杂的深度学习模型才能获得较高的检测性能。然而,深度学习检测模型参数量较大,难以在计算机底层得到实际应用。为了解决上述问题,本文提出了一种新颖的动态分析方法来检测恶意软件。首先,该方法创建了一个自动微结构特征收集系统,并从收集的通用寄存器(General-Purpose Registers, GPRs)数据中随机抽取子样本作为分类特征矩阵。相比于其他微结构特征, GPRs特征具有更丰富的行为特征信息,但也包含更多的噪声信息。因此,需要对GPRs数据进行特征区间分割,以降低数据复杂度并抑制噪声。本文随后采用词频-逆文档频率(Term Frequency-Inverse Document Frequency, TF-IDF)技术从抽取的特征矩阵中选择最具区分性的信息来进行恶意软件检测。TF-IDF技术可以有效降低特征矩阵的维度,从而提高检测效率。为了降低模型复杂度,并保证检测方法的性能,本文利用集成学习模型来识... 相似文献