首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对传统基于相似度的离群点检测算法在高维不均衡数据集上效果不够理想的问题,提出一种新颖的基于随机投影与集成学习的离群点检测(ensemble learning and random projection-based outlier detection,EROD)框架。算法首先集成多个随机投影方法对高维数据进行降维,提升数据多样性;然后集成多个不同的传统离群点检测器构建异质集成模型,增加算法鲁棒性;最后使用异质模型对降维后的数据进行训练,训练后的模型经过两次优化组合以降低泛化误差,输出最终的对象离群值,离群值高的对象被算法判定为离群点。分别在四个不同领域的高维不均衡真实数据集上进行对比实验,结果表明该算法与传统离群点检测算法和基于集成学习的离群点检测算法相比,在AUC和precision@n值上平均提高了3.6%和14.45%,证明EROD算法具有处理高维不均衡数据异常的优势。  相似文献   

2.
针对基于自编码器的离群点检测算法在中小规模数据集上易过拟合以及传统的基于集成学习的离群点检测算法未对基检测器进行优化选择而导致的检测精度低的问题,提出了一种基于自编码器与集成学习的离群点检测(EAOD)算法。首先,随机改变自编码器的连接结构来生成不同的基检测器,以获取数据对象的离群值和标签离群值;然后,通过最近邻算法计算数据对象之间的欧氏距离,并在对象周围构建局部区域;最后,根据离群值与标签离群值之间的相似度,选择在该区域内检测能力强的基检测器进行组合,组合后的对象离群值作为EAOD算法最终判定的离群值。在实验中,所提算法与自编码器(AE)算法相比,在Cardio数据集上,接受者操作特征曲线下方的面积(AUC)和平均精度(AP)分值分别提高了8.08个百分点和9.17个百分点;所提算法与特征装袋(FB)集成学习算法相比,在Mnist数据集上,运行时间成本降低了21.33%。实验结果表明,在无监督学习下所提算法具有良好的检测性能和检测实时性。  相似文献   

3.
基于空间约束的离群点挖掘   总被引:1,自引:0,他引:1  
由于现有的空间离群点检测算法没有很好地解决空间数据的自相关性和异质性约束问题,提出用计算邻域距离的方法解决空间自相关性约束问题,用计算空间局部离群系数的方法解决空间异质性约束问题。用离群系数表示对象的离群程度,并将离群系数按降序排列,取离群系数最大的前m个对象为离群点,据此提出基于空间约束的离群点挖掘算法。实验结果表明,所提算法比已有算法具有更高的检测精度、更低的用户依赖性和更高的效率。  相似文献   

4.
离群点挖掘方法综述   总被引:10,自引:2,他引:10  
离群点挖掘可揭示稀有事件和现象、发现有趣的模式,有着广阔的应用前景,因此引起广泛关注。首先介绍离群点的定义、引起离群的原因和离群点挖掘算法的分类,对基于距离和基于密度的离群点挖掘算法进行了比较详细的讨论,指出了其优缺点和发展方向,重点对当前研究的热点——高维大数据量的挖掘、空间数据挖掘、时序离群点挖掘和离群点挖掘技术的应用进行了讨论,指出了进一步研究方向。  相似文献   

5.
离群点挖掘研究   总被引:8,自引:1,他引:8  
随着人们对欺诈检测、网络入侵、故障诊断等问题的关注,离群点挖掘研究日益受到重视。在充分调研国内外离群点挖掘研究成果的基础上,介绍了数据库领域离群点挖掘的研究进展,并概要地总结和比较了已有的各种离群点挖掘方法,展望了离群点挖掘研究的未来发展方向和面临的挑战。  相似文献   

6.
局部离群点挖掘算法研究   总被引:14,自引:0,他引:14  
离群点可分为全局离群点和局部离群点.在很多情况下,局部离群点的挖掘比全局离群点的挖掘更有意义.现有的基于局部离群度的离群点挖掘算法存在检测精度依赖于用户给定的参数、计算复杂度高等局限.文中提出将对象属性分为固有属性和环境属性,用环境属性确定对象邻域、固有属性计算离群度的方法克服上述局限;并以空间数据为例,将空间属性与非空间属性分开,用空间属性确定空间邻域,用非空间属性计算空间离群度,设计了空间离群点挖掘算法.实验结果表明,所提算法具有对用户依赖性少、检测精度高、可伸缩性强和运算效率高的优点.  相似文献   

7.
离群点检测是数据挖掘领域的一个重要分支,当前数据流的离群点检测研究越来越受到关注.为了快速准确地检测出数据流中离群点,提出一种在线数据流离群点检测算法ODDS(outlier detection in online data stream s).它利用数据与频繁模式的相异程度来度量数据的离群程度,通过构建ODDS-Tree树,能动态地更新数据流中候选离群点的离群信息.实验结果验证了该算法与其他同类算法相比具有较高的效率与优良的可扩展性能.  相似文献   

8.
基于距离和基于密度的离群点检测算法受到维度和数据量伸缩性的挑战, 而空间数据的自相关性和异质性决定了以属性相互独立和分类属性的基于信息理论的离群点检测算法也难以适应空间离群点检测, 因此提出了基于全息熵的混合属性空间离群点检测算法。算法利用区域标志属性进行区域划分, 在区域内利用空间关系确定空间邻域, 并用R*-树进行检索。在此基础上提出了基于全息熵的空间离群度的度量方法和空间离群点挖掘算法, 有效解决了混合属性的离群度的度量和离群点的挖掘问题。由于实现区域划分有利于并行计算, 从而可适应大数据量的计算。理论和实验证明, 所提算法在计算效率和实验结果的可解释性方面均具有优势。  相似文献   

9.
针对高校学生工作者任务繁多且直接管理的学生人数众多,难于对每个学生进行个性化的学习指导的实际问题,提出基于离群点检测的学生学习状态分析方法,将有限的教育资源分配给最迫切需求的学生。使用基于密度的局部离群点检测算法对学生考试成绩数据进行挖掘,找出可疑离群学生,然后对可疑离群学生进行学习状态分析。案例研究结果表明,本方法能够有效地找出学习状态异常的学生,可以提升高校学生工作者的管理效率。  相似文献   

10.
无线网络动态数据完整性呈非线性分布,数据结构较为复杂,完整性检测效果较差.为此,设计基于离群点检测算法的无线网络动态数据完整性检测方法.设计离群点检测算法动态数据生成层的数据组结构,据此得到机器计量数据学习离群点,根据数据学习离群点位置,计算动态数据完整性检测指标.构建动态数据完整性检测算法,完成无线网络动态数据完整性...  相似文献   

11.
本文提出了一种个性化垃圾邮件过滤方法,它能够根据用户反馈自动学习出用户兴趣,并随时间的推移自动适应用户兴趣的变化。该方法首先抽取邮件的语言特征和行为特征构建多个基于规则的单独过滤器,然后采用SVM集成学习方法组合这些单独过滤器的结果。为了提高学习速度、减少用户提供反馈的数量,本文采用了主动学习方法挑选更加富含知识的邮件请求用户给出反馈。实验结果表明:集成学习和主动学习相结合的个性化过滤方法在个性化程度、分类准确率、过滤速度以及自动学习能力等方面具有更好的性能。  相似文献   

12.
李凯  陈武 《计算机工程》2008,34(11):166-167
入侵检测是近年来网络安全研究的热点。利用多分类器技术,研究了基于集成学习的入侵检测方法。应用Bootstrap技术生成分类器个体,为了提高分类器的差异性,应用聚类技术对分类器进行聚类,在相应的聚类结果中选取不同的分类器个体,并选择不同的融合方法对分类结果进行融合。针对入侵检测数据的实验表明了该集成技术的有效性。  相似文献   

13.
二次集成学习在医疗数据挖掘中的应用   总被引:1,自引:0,他引:1  
CCDM 2014数据挖掘竞赛基于医学诊断数据,提出了实际生活中广泛出现的多类标问题和多类分类问题。针对两个问题出现的类别不平衡现象以及训练样本较少等特点,为了更好地完成数据挖掘任务,借助二次学习和集成学习的思想,提出了一个新的学习框架--二次集成学习。该学习框架通过首次集成学习得到若干置信度较高的样本,将其加入到原始训练集,并在新的训练集上进行二次学习,进而得到泛化性能更高的分类器。竞赛结果表明,与常用的集成学习相比,二次集成学习在两个问题上均取得了非常理想的结果。  相似文献   

14.
分析了神经网络集成泛化误差、个体神经网络泛化误差、个体神经网络差异度之间的关系,提出了一种个体神经网络主动学习方法.个体神经网络同时交互训练,既满足了个体神经网络的精度要求,又满足了个体神经网络的差异性要求.另外,给出了一种个体神经网络选择性集成方法,对个体神经网络加入偏置量,增加了个体神经网络的可选数量,降低了神经网络集成的泛化误差.理论分析和实验结果表明,使用这种个体神经网络训练方法、个体神经网络选择性集成方法能够构建有效的神经网络集成系统.  相似文献   

15.
陈全  赵文辉  李洁  江雨燕 《微机发展》2010,(2):87-89,94
通过选择性集成可以获得比单个学习器和全部集成学习更好的学习效果,可以显著地提高学习系统的泛化性能。文中提出一种多层次选择性集成学习算法,即在基分类器中通过多次按权重进行部分选择,形成多个集成分类器,对形成的集成分类器进行再集成,最后通过对个集成分类器多数投票的方式决定算法的输出。针对决策树与神经网络模型在20个标准数据集对集成学习算法Ada—ens进行了实验研究,试验证明基于数据的集成学习算法的性能优于基于特征集的集成学习算法的性能,有更好的分类准确率和泛化性能。  相似文献   

16.
离群点检测是数据挖掘领域的重要研究方向之一,可以从大量数据中发现少量与多数数据有明显区别的数据对象。在诸如网络入侵、无线传感器网络异常事件等检测应用中,离群点检测是一项具有很高应用价值的技术。为了提高离群点检测准确度,文中在局部离群测度(SLOM)算法的基础上,作了一些改进,提出了一种基于密度的局部离群点检测算法ESLOM。引入信息熵确定数据对象的离群属性,并对对象距离采用加权距离,以提高离群点检测准确度。理论分析和实验表明该算法是可行有效的。  相似文献   

17.
基于蚁群聚类算法的离群挖掘方法   总被引:9,自引:4,他引:9  
离群挖掘是数据挖掘研究的重要内容,在实际生活中获得广泛应用。该文首先给出了离群数据的量化定义,并用基于蚁群的聚类学习方法,产生了状态空间的整体特征。然后结合具体的设备对象,提出了离群数据的挖掘方法。最后进行了实验验证,结果表明该文提出的方法是有效的。  相似文献   

18.
基于孤立点检测的入侵检测方法研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文提出了一种基于孤立点检测的核聚类入侵检测方法。方法的基本思想是首先将输入空间中的样本映射到高维特征空间中,并通过重新定义特征空间中数据点到聚类之间的距离来生成聚类,并根据正常类比例N来确定异常数据类别,然后再用于真实数据的检测。该方法具有更快的收敛速度以及更为准确的聚类,并且不需要用人工的或其他的方法来对训练集进行分类。实验采用了KDD99的测试数据,结果表明,该方法能够比较有效的检测入侵行为。  相似文献   

19.
异常检测旨在检测出观测数据中的非正常值,被广泛应用于反信用卡欺诈、网络入侵检测、医疗分析以及气象预报等领域。在异常检测中,正常数据通常具有异常数据所不具备的某种内蕴结构。因此,如何有效地利用正常数据与异常数据在数据结构上的差异性将有助于提高异常检测性能。为此,本文提出了一种新颖的基于标签传递的异常检测算法。该算法通过图模型刻画正常数据所具有的内蕴结构,并通过多重标签传递来构建未标记正例样本与待测试样本的标签置信度的差异。最后,基于正例样本的标签置信度的统计特性分析,实现对测试样本的异常性判决。在人工合成及真实数据集上的实验验证了本文算法的有效性。  相似文献   

20.
将集成学习的思想引入到增量学习之中可以显著提升学习效果,近年关于集成式增量学习的研究大多采用加权投票的方式将多个同质分类器进行结合,并没有很好地解决增量学习中的稳定-可塑性难题。针对此提出了一种异构分类器集成增量学习算法。该算法在训练过程中,为使模型更具稳定性,用新数据训练多个基分类器加入到异构的集成模型之中,同时采用局部敏感哈希表保存数据梗概以备待测样本近邻的查找;为了适应不断变化的数据,还会用新获得的数据更新集成模型中基分类器的投票权重;对待测样本进行类别预测时,以局部敏感哈希表中与待测样本相似的数据作为桥梁,计算基分类器针对该待测样本的动态权重,结合多个基分类器的投票权重和动态权重判定待测样本所属类别。通过对比实验,证明了该增量算法有比较高的稳定性和泛化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号