首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The use of High Pressure Grinding Rollers (HPGR) has been widely reported to have major benefits in the treatment of minerals such as iron ore and diamonds. To date there have been few investigations into its use in the treatment of ores containing Platinum-Group Minerals (PGMs). HPGRs are known to reduce energy consumption and wear costs and improve the throughput in the circuit. In the present investigation the effect of the comparative use of HPGR and conventional crushing in combination with either dry or wet rod milling on the flotation of PGMs was studied using batch flotation. Previous studies of a base metal sulphide had shown that either HPGR or conventional crushing followed by dry milling produced the highest grades and recoveries (Palm et al., 2010). However in the present study it was observed that a similar treatment of Platinum-Group Minerals produced the poorest results and the highest grades and recoveries were obtained for the case of conventional crushing in combination with wet milling. The HPGR showed no advantages in terms of flotation performance and dry milling produced particularly poor flotation results.The results were investigated further using various surface characterization techniques in order to determine the reason for the decrease in grades and recoveries of platinum when using dry milling and HPGR as opposed to the case for base metal sulphides. The feed and product samples were analysed using ToF-SIMS, XPS and MLA. The paper will propose reasons to explain the different flotation behaviour of the two ore types following the various comminution processes focusing on the surface characteristics of the ores, the particle size distribution and the pulp chemistry.  相似文献   

2.
以齐大山铁矿细碎矿石为对象,考察其高压辊磨机粉碎产品的磨矿特性和单体解离特性,并与实验室颚式破碎机粉碎产品进行比较,结果表明:当目标粒度分别为0.074和0.280 mm时,辊压产品的邦德球磨功指数分别比颚破产品的降低13.96%和28.23%;在-0.074 mm占80%磨矿细度下,-3.2和3.2~0.074 mm辊压产品与对应颚破产品的相对可磨度分别为0.83和0.86;辊压产品与颚破产品相比,-0.5 mm粒级中铁矿物的单体解离度高15.16个百分点,不同磨矿细度下的磨矿产物中铁矿物的单体解离度高5.55~0.98个百分点;辊压产品磨矿产物中的连生体属于二次磨矿时易于解离的连生体,而颚破产品磨矿产物中的连生体属于二次磨矿时难以完全解离的连生体。  相似文献   

3.
基于层压粉碎原理,高压辊磨机具有处理量大、能量利用率高、粉碎产品粒度细等特性,已经广泛应用 于冶金矿山领域,且节能降耗效果显著。 文章总结了开路粉碎、边料返回半闭路粉碎和筛分(包括干法筛分和湿法筛 分)全闭路粉碎三种粉碎工艺的选择依据。 结合高压辊磨机在金刚石解离、铁矿球团原料预处理、(半)自磨顽石破碎 和金属矿磨前粉碎领域的典型应用案例,重点阐述了高压辊磨机的粉碎工艺流程、设备型号、操作参数及应用效果。 不断提高粉碎效率、降低粉碎成本仍是高压辊磨机粉碎工艺的发展方向。 虽然多台高压辊磨机串联配置、高压辊磨 机与风力分级设备配置、高压辊磨机与搅拌磨机直接配置等新工艺发展不够成熟,但节能降耗优势明显,有望为冶金 矿山物料高效粉碎提供新的解决方案。  相似文献   

4.
高压辊磨机粉碎原理为层压粉碎,具有处理量大、节能高效等特点。与传统破碎方式相比,高压辊磨机粉碎产品细粒级含量高、微裂纹发育、矿物解离度高、邦德球磨功指数低,还有助于下游选别或浸出作业。随着辊面抗压强度和抗磨蚀性能不断增强,高压辊磨机已经广泛应用于冶金矿山领域,如金刚石与围岩解离、球团原料铁精矿预处理、金属矿磨前(超)细碎,(半)自磨工艺顽石破碎等。高压辊磨机的成功应用与其粉碎行为密切相关。文章依次从高压辊磨机的研发背景、工作原理、辊面压力分布、宏观粉碎过程、料床应力响应、粉碎产品特性等方面系统评述了高压辊磨机的粉碎行为,并分析了边缘效应和辊面磨损的产生机理、负面影响及其应对措施,旨在全面地阐述高压辊磨机粉碎行为。  相似文献   

5.
6.
对贫磁铁矿进行高压辊磨破碎和传统颚式破碎, 对比研究了不同破碎工艺对破碎产物预选分离指标和磨矿特性的影响。结果表明, 与传统颚式破碎相比, 高压辊磨的破碎比(F80/P80)高31.52%, 产物中-0.074 mm粒级含量高8.46个百分点;干式抛尾精矿全铁品位高2.66个百分点, 全铁回收率和磁性铁回收率分别高4.54和4.47个百分点。在-0.074 mm粒级占85%的磨矿细度下, 高压辊磨产物与传统破碎产物的相对可磨度为1.24, 高压辊磨产物在磨矿过程中细粒级的生成速率比传统破碎快;高压辊磨破碎产物表面产生的微裂纹比传统破碎多, 这是高压辊磨能提高破碎产物预选分离指标和可磨性的主要因素。  相似文献   

7.
高压辊磨破碎是基于料层粉碎的一种新型破碎方式,不仅本作业破碎效率高、能耗低、粉矿量大,而且破碎产品颗粒内部丰富的微裂纹也有利于后续磨矿作业节能。为了定量评价高压辊磨破碎对后续磨矿的影响,以鞍山式某赤铁矿石为试样,进行了磨矿技术效率和Bond球磨功指数试验。结果表明:由于高压辊磨产品中小于指定粒度(-0.074 mm)的物料产率明显较高,因而在较粗磨矿细度下,高压辊磨产品的磨矿技术效率均略低于颚式破碎产品,但随着磨矿细度的提高,二者的差距越来越小,当-0.074 mm占85%时,二者的磨矿技术效率相当,超过该磨矿细度,则磨矿效率开始小幅反超;目标粒度为280、150、105、74 μm时,高压辊磨产品的Bond球磨功指数比颚式破碎产品分别低9.41%、7.70%、4.97%和4.28%,降低的幅度随目标粒度的降低而减小,表明高压辊磨破碎对一段磨矿有显著的节能效果。  相似文献   

8.
郭小飞 《金属矿山》2017,46(6):70-74
结合高压辊磨机中物料粉碎机理,介绍了影响高压辊磨机粉碎效果的关键因素,评述了高压辊磨机设备选型试验的研究现状。高压辊磨机粉碎物料的效果主要受物料性质、辊压机工作参数及粉碎工艺等的影响。通过小型及半工业型高压辊磨机粉碎试验能够为高压辊磨机的设备选型和流程设计提供依据,但试验过程相对复杂。颗粒床活塞压载试验和数学建模尽管能够对矿石料层粉碎的工作压力、比能耗、产品粒度分布等进行有效预测,但和高压辊磨机设备选型的经验公式一样均需要对其适用性进行验证。指出高压辊磨机未来的研究方向为粉碎过程中能量传递模型、矿石碎磨特性及对分选工艺影响等的理论基础研究,以及高压辊磨机在选矿流程中的数值模拟研究。  相似文献   

9.
In mining operations, jaw and gyratory crushers are generally used for primary crushing, and cone crushers are used for secondary crushing. During the past decade, however, high-pressure grinding rolls (HPGR) are being considered due to potential processing benefits such as energy savings, improved exposure/liberation and particle weakening. At this time there is no detailed quantification of particle damage and downstream benefits from HPGR crushing are uncertain. In the present research, copper ores (copper oxide ore and copper sulfide ore) were crushed by a jaw crusher and by HPGR and the products were evaluated for particle damage and copper grain exposure by X-ray computed tomography. Column leaching was done to determine the rate and extent of copper recovery.X-ray computed tomography analysis and laboratory column leaching experiments for copper oxide ore revealed that products from HPGR crushing have more particle damage and higher copper recoveries when compared with products of the same size class from jaw crusher crushing. Generally the copper recovery from column leaching of the oxide ore was found to be dependent on the extent of grain exposure, which increases with a decrease in particle size.In the case of the copper sulfide ore, copper recovery was found to be independent of the crushing technique despite the fact that more particle damage was observed in products from HPGR crushing. This unexpected behavior for the copper sulfide ore might be due to the high head grade and strong leach solution. Column leaching results also show that about 80–90% of the copper was recovered from the copper sulfide ore in a relatively short leaching time irrespective of crushing technique. As expected, copper recoveries improved with a decrease in the particle size of the copper sulfide ore as exposure of copper mineral grains increased.  相似文献   

10.
为探索采用高效碎磨工艺处理福建马坑铁矿石的可行性,进行了高压辊磨—湿式中磁预选—阶段磨选工艺流程试验。结果表明:较常规碎矿工艺,高压辊磨破碎获得的产品细粒级含量显著提高,能够满足湿式中磁预选的粒度要求;磨矿条件相同时,高压辊磨产品相对传统颚式破碎产品新生成-0.074 mm粒级含量高,相对可磨度高;高压辊磨产品(-5 mm)经湿式中磁预选—两阶段磨矿弱磁选,可在磨前抛出38.88%的合格尾矿,并可获得铁品位为66.75%、磁性铁品位为65.95%、铁回收率为80.21%、磁性铁回收率为96.25%的铁精矿,精矿铁品位较现场提高了2.66个百分点、铁回收率提高了0.30个百分点,可作为马坑铁矿节能降耗、提质增效改造设计的依据。  相似文献   

11.
崔少文  郭小飞  郗悦  刘淑杰 《金属矿山》2018,47(12):115-118
从高压辊磨机的工作原理及粉碎产品特性出发,分析了高压辊磨超细碎在贫磁铁矿石预选工艺中的作用。高压辊磨机特有的层压粉碎方式使其粉碎产品具有细粒级含量高、微裂纹发育充分、解离特性好等特点。高压辊磨超细碎—预选工艺能够在贫磁铁矿石入磨前抛除大量合格尾矿,减少入磨量,提高入磨品位,降低矿石的Bond球磨功指数,提高选别效率,有利于实现节能降耗。指出今后应加强高压辊磨设备与矿石性质及生产工艺的适应性研究,发展高效、低耗的新型辊磨设备,高压辊磨机与先进的预选设备配合使用时效果更好,因此针对高压辊磨产品的特性,研发配套的先进预选设备,对提高高压辊磨超细碎—预选指标具有重要意义。  相似文献   

12.
As the trends in mineral processing move towards the beneficiation of finer grained and more complex ore bodies, so too do the methods needed to understand and model these processes. During the heap leaching of low-grade ore bodies, the crack distribution and mineral dissemination in ore particles are important characteristics that determine the performance of sub-processes, such as the diffusion of reagents in and out of particle pores. Recent developments in X-ray computed tomography (CT) as an advanced diagnostic and nondestructive technique have indicated the potential for the technology to become a tool for the acquisition of 3-D mineralogical and structural data. The spatial distribution of cracks and mineral dissemination in particles derived from a sphalerite ore in the Northern Cape, South Africa, was characterized using a high-resolution industrial X-ray CT system.This paper describes the use of image analysis techniques including image segmentation, which uses a combination of thresholding and other methods to characterize and quantify crack and mineral dissemination in the sphalerite particles. The results are validated with those obtained using traditional techniques such as physical gas (with N2) adsorption, mercury intrusion porosimetry, SEM and QEMSCAN. A comparison of the effect of different comminution devices (HPGR and Cone crusher) on crack generation is also given.  相似文献   

13.
孙业长 《金属矿山》2017,46(5):69-72
为了解高压辊磨破碎对罗河铁矿选矿厂细碎产品可磨性的影响,对现场细碎产品进行了开路辊压破碎、边料返回闭路辊压破碎试验,边料返回闭路辊压破碎产品与现场细碎产品相对可磨度测定试验,样品和高压辊磨机边料返回闭路破碎产品球磨功指数测定试验,以及增设高压辊磨工艺后一段球磨扩能效果分析。结果表明:①高压辊磨作业可大幅度提高产品中细粒级含量,边料返回闭路破碎试验产品-3 mm粒级含量由辊磨前的56.73%提高至85.30%,提高28.57个百分点;-5 mm粒级含量由辊磨前的67.79%提高至92.65%,提高24.86个百分点;单位处理量为252 ts/(hm3)。②高压辊磨作业可显著改善入磨矿石的磨矿性能,当磨矿细度为-0.075 mm占60%时,与样品相比,高压辊磨机边料返回闭路破碎产品的相对可磨度为1.294;样品经高压辊磨破碎后,其球磨邦德功指数由16.15 kWh/t降至13.75 kWh/t,降幅为14.86%。③选矿厂增设高压辊磨边料返回超细碎作业后,由于入磨矿石可磨性的改善,一段球磨的产能可提高35.41%。  相似文献   

14.
The surface chemistry and mineral liberation changes of a porphyry copper ore after high voltage pulse (HVP) electrical comminution have been investigated using X-ray photoelectron spectroscopy (XPS) and mineral liberation analysis (MLA). Previous studies suggest that electrical comminution has the potential to improve downstream flotation recoveries, due to increased mineral liberation. However, until now the effects on the surface chemistry have not been investigated in detail.The mineral liberation results showed that chalcopyrite was more liberated in the electrical comminution product than in mechanical comminution, noticeably in the coarser size fractions. The surface chemistry of pure chalcopyrite was investigated, using XPS, and high resolution scans of iron and sulphur showed that both comminution methods led to iron oxidising preferentially leaving behind a passivating film of copper sulphides. However, the HVP product oxidisation was more severe with more iron oxide being produced and further oxidation of the remaining copper sulphides into copper sulphate. An attrition grinding stage may be useful in removing the oxidised layer from the surface of the particles prior to flotation separation. This paper presents a new application of the HVP technology in hybrid procedures using electrical comminution and mechanical grinding to prepare the flotation feed, rather than using excessive pulse energy to fully disintegrate ore to the flotation size. Better liberation and flotation performance were achieved through the hybrid procedures than the comparative mechanical comminution.  相似文献   

15.
为解决废石堆存造成的一系列环境及安全问题,明确铁矿废石制备砂石骨料工艺流程,以辽宁鞍本地区某铁矿废石为例,在对其性质进行分析的基础上,开展了基于Bond球磨功指数试验与JK落重试验的碎磨特性参数研究。Bond球磨功指数试验结果显示,该铁矿废石Bond球磨功指数Wib为12.05 kWh/t。JK落重试验结果显示,该铁矿废石抗冲击粉碎模型为t10=71.25(1-e-0.52ECS) ,其中冲击粉碎参数A×b的值为37.05;磨蚀系数ta的值为0.17;相对密度为3.06。试验结果表明,该铁矿废石抗冲击粉碎能力属于硬范畴,抗磨蚀粉碎能力属于极硬范畴。结合上述试验结果,最终确定了该铁矿废石的生产设备与利用工艺。  相似文献   

16.
Although heap leaching is by now well established in the mining industry, the process remains limited by low recoveries with different rate-limiting factors that are not clearly understood. In this study, three large particle size classes (+19/−25, +9.5/−16, +4.75/−5 mm) were prepared from a sphalerite ore by two different methods of comminution (HPGR and cone crusher). The particles were then packed into leach reactors that were operated continuously for 11 months with well-mixed internal circulation of the leach solution. Characterization of the residue of the leach reactors indicated that there are areas within the ore particles where although sphalerite grains are accessible to the solution, they remain unreacted. X-ray tomography and QEMSCAN® analysis of the selected samples before, during and after leaching, showed increased leaching of sphalerite grains associated with pyrite due to galvanic interactions. Mineral chemistry (Fe, Mn content of sphalerite) and jarosite precipitation were also investigated as factors influencing sphalerite leaching.  相似文献   

17.
The total energy consumption for ore comminution will further increase within the next decades. One contribution to minimise the increase is to use more efficient comminution equipment. Vertical-roller-mills (VRM) are an energy-efficient alternative to conventional grinding technology. One reason is the dry in-bed grinding principle. Results of extensive test works with two types of magnetite iron ores in a Loesche VRM are presented here. Within these test works, mill parameters like grinding pressure, separator speed and dam ring height were varied, following a factorial design of the experiments. The effects of the grinding parameters on the liberation of valuable minerals are characterised using mineral liberation analysis (MLA). It is shown how the different mill parameters influence important performance values like energy consumption, production rate and mineral liberation. Via multiple regression analysis, an optimal parameter range can be modelled for both ore types. The parameter predictions have been successfully verified in practical test works.  相似文献   

18.
破碎方式对邦铺钼铜矿石可磨性及钼浮选的影响   总被引:3,自引:0,他引:3  
分别采用高压辊磨工艺和传统破碎工艺将西藏墨竹工卡县邦铺钼铜矿石破碎到-3.2 mm,分析了两种破碎产品的粒度特性,测定了两种破碎方式下矿石的 Bond球磨功指数,考察了两种破碎方式对后续球磨-钼浮选的影响。结果表明:高压辊磨产品比传统破碎产品细粒级含量多且粒度分布更均匀;高压辊磨产品在不同目标粒度下的Bond 球磨功指数比传统破碎产品至少降低9.05%;高压辊磨产品和传统破碎产品浮选钼的最佳磨矿细度分别为-0.074 mm占65%和75%,相应地,前者的Bond球磨功指数比后者降低10.87%,但浮钼回收率减少2.32个百分点。  相似文献   

19.
《Minerals Engineering》2007,20(2):179-187
This paper evaluates fragmentation behaviour, particle size distribution and liberation degree during bed comminution of particles. Three different cases of bed comminution are modelled through discrete element simulations. The role of stressing velocities on breakage, effects of crushing walls on fragmentation and influence of crushing gaps on liberation and particle size distribution are considered. The discrete element sample is modelled to represent the concrete specimens of B35 strength category.It has been observed that the particles around the stressing walls fail differently than the inner particles during bed comminution. The stressing velocity and the crushing walls have been found to affect the cracking mechanism of the particles. The liberation degree in bed comminution is less as compared to single particle crushing. The results presented in this paper can be used to model the liberation and recycling of valuable aggregates from cheaper matrixes.  相似文献   

20.
Milling is an energy intensive process and it is considered as one of the most energy inefficient processes. Electrical and mechanical shock loading can be used to develop a pre-treatment methodology to enhance energy efficiency of comminution and liberation of minerals. Coal and Banded Hematite Jasper (BHJ) Iron ores samples were taken for the study to know the effect of shock loading. These samples were exposed to 5 electric shocks of 300 kV using an electric shock loading device. A diaphragmless shock tube was used to produce 3 and 6 compressed air shocks of Mach number 2.12 to treat the coal and Iron ore samples. Microscopic, comminution and liberation studies were carried out to compare the effectiveness of these approaches. It was found that electric shock loading can comminute the coal samples more effectively and increases the yield of carbon by 40% at 1.6 gm/cc density over the untreated coal samples. Mechanical shock loading showed improved milling performance for both the materials and 12.90% and 8.1% reduction in the D80 of the particles was observed during grinding for treated samples of coal and iron, respectively. Liberation of minerals in BHJ Iron ore was found unaffected due to low intensity of the mechanical shock waves and non conductivity of minerals. Compressed air based shock loading is easier to operate than electrical shock loading and it needs to be explored further to improve the energy efficacy of comminution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号