首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
目前针对未知的Android恶意应用可以采用机器学习算法进行检测,但传统的机器学习算法具有少于三层的计算单元,无法充分挖掘Android应用程序特征深层次的表达。文中首次提出了一种基于深度学习的算法DDBN (Data-flow Deep BeliefNetwork)对Android应用程序数据流特征进行分析,从而检测Android未知恶意应用。首先,使用分析工具FlowDroid和SUSI提取能够反映Android应用恶意行为的静态数据流特征;然后,针对该特征设计了数据流深度学习算法DDBN,该算法通过构建深层的模型结构,并进行逐层特征变换,将数据流在原空间的特征表示变换到新的特征空间,从而使分类更加准确;最后,基于DDBN实现了Android恶意应用检测工具Flowdect,并对现实中的大量安全应用和恶意应用进行检测。实验结果表明,Flowdect能够充分学习Android应用程序的数据流特征,用于检测未知的Android恶意应用。通过与其他基于传统机器学习算法的检测方案对比,DDBN算法具有更优的检测效果。  相似文献   

2.
为进一步提高Android恶意应用的检测效率,提出一种基于BHNB(Bagging Hierarchical Na?ve Bayesian)的细粒度Android恶意应用检测模型。该模型首先对样本库中的应用进行类别划分,并分别对其进行动态分析,提取各个应用程序的行为信息作为特征;然后,采用层次朴素贝叶斯HNB(Hierarchical Na?ve Bayesian)分类算法对各类应用特征集合进行分别训练,从而构建出多个层次朴素贝叶斯分类器;最后,采用Bagging集成学习方法对构建出的多个层次朴素贝叶斯分类器进行集成学习,构建出基于层次朴素贝叶斯的Bagging集成学习分类器BHNB。实验结果表明,该模型能够有效检测出Android恶意应用,且检测效率较高。  相似文献   

3.
4.
针对Android手机应用程序存在的安全问题,对恶意应用的检测方法进行了深入研究,提出一种基于权限特征的Android恶意应用检测方法。方法中设计了一种挖掘权限频繁项集的算法——Droid FP-Growth。在构建权限关系特征库时,利用该算法挖掘样本集的权限频繁项集,获得检测规则。该算法仅需扫描两次样本集便可获得权限频繁项集,有效地提高了构建权限关系特征库的效率,同时也提高了检测的准确率。最终实验结果表明,方法对恶意应用的检测率达到81.2%,准确率达到83.6%,对比同类方法也一定优势。  相似文献   

5.
在分析Android系统总共165个权限的基础上,提炼出30个理论上可以获取Android系统隐私资源的恶意权限组合。提出一种针对应用类别的基于恶意权限组合的恶意值、待测应用恶意权值、恶意阈值的窃取隐私恶意应用检测方法。通过实验验证了该方法的正确性和准确率,并在Android系统中得以实现。  相似文献   

6.
7.
随着Android系统的广泛应用,Android平台下的恶意应用层出不穷,并且恶意应用躲避现有检测工具的手段也越来越复杂,亟需更有效的检测技术来分析恶意行为。文中提出并设计了一种基于N-gram的静态恶意检测模型,该模型通过逆向手段反编译Android APK文件,利用N-gram技术在字节码上提取特征,以此避免传统检测中专家知识的依赖。同时,该模型使用深度置信网络,能够快速而准确地学习训练。通过对1267个恶意样本和1200个善意样本进行测试,结果显示模型整体的检测准确率最高可以达到98.34%。实验进一步比较了该模型和其他算法的检测结果,并对比了相关工作的检测效果,结果表明该模型有更好的准确率和鲁棒性。  相似文献   

8.
传统的机器学习算法无法有效地从海量的行为特征中选择出有本质的行为特征来对未知的Android恶意应用进行检测。为了解决这个问题,提出DBNSel,一种基于深度信念网络模型的Android恶意应用检测方法。为了实现该方法,首先通过静态分析方法从Android应用中提取5类不同的属性。其次,建立深度信念网络模型从提取到的属性中进行选择和学习。最后,使用学习到的属性来对未知类型的Android恶意应用进行检测。在实验阶段,使用一个由3 986个Android正常应用和3 986个Android恶意应用组成的数据集来验证DBNSel的有效性。实验结果表明,DBNSel的检测结果要优于其他几种已有的检测方法,并可以达到99.4%的检测准确率。此外,DBNSel具有较低的运行开销,可以适应于更大规模的真实环境下的Android恶意应用检测。  相似文献   

9.
10.
基于图像相似性的Android钓鱼恶意应用检测方法   总被引:1,自引:0,他引:1  
在移动互联网日益兴盛的今天,攻击者已开始通过移动应用的形式来实施网络钓鱼,而现有的网络钓鱼检测方法主要针对网页钓鱼,无法应对这一新的安全威胁。钓鱼恶意应用的一个显著特点是通过构造与目标应用相似的界面来诱骗用户输入敏感信息。基于这种视觉相似性,提出了一种面向Android平台的钓鱼恶意应用检测方法。该方法通过动态技术截取被检测应用的人机交互界面,利用图像哈希感知算法计算其与目标应用界面的图像相似度。如果相似度超过阈值,则识别被检测应用程序为钓鱼恶意应用。实验表明,该方法可以有效检测Android平台上的恶意钓鱼应用程序。  相似文献   

11.
Android由于其广泛的普及率使得其平台上的恶意软件数量不断增加,针对目前大部分方法采用单一特征和单一算法进行检验,准确率不高的不足,提出了一种基于多特征与Stacking算法的静态检测方法,该方法能够弥补这两方面的不足. 首先使用多种特征信息组成特征向量,并且使用Stacking集成学习算法组合Logistic,SVM,k近邻和CART决策树多个基本算法,再通过训练样本进行学习形成分类器. 实验结果表明,相对于使用单一特征和单一算法其识别准确率得到提高,可达94.05%,该分类器对测试样本拥有较好的识别性能.  相似文献   

12.
对于传统的恶意程序检测方法存在的缺点,针对将数据挖掘和机器学习算法被应用在未知恶意程序的检测方法进行研究。当前使用单一特征的机器学习算法无法充分发挥其数据处理能力,检测效果不佳。文中将语音识别模型与随机森林算法相结合,首次提出了综和APK文件多类特征统一建立N-gram模型,并应用随机森林算法用于未知恶意程序检测。首先,采用多种方式提取可以反映Android恶意程序行为的3类特征,包括敏感权限、DVM函数调用序列以及OpCodes特征;然后,针对每类特征建立N-gram模型,每个模型可以独立评判恶意程序行为;最后,3类特征模型统一加入随机森林算法进行学习,从而对Android程序进行检测。基于该方法实现了Android恶意程序检测系统,并对811个非恶意程序及826个恶意程序进行检测,准确率较高。综合各个评价指标,与其他相关工作对比,实验结果表明该系统在恶意程序检测准确率和有效性上表现更优。  相似文献   

13.
伴随着互联网的普及和5G通信技术的快速发展,网络空间所面临的威胁日益增大,尤其是恶意软件的数量呈指数型上升,其所属家族的变种爆发式增加.传统的基于人工签名的恶意软件的检测方式速度太慢,难以处理每天数百万计新增的恶意软件,而普通的机器学习分类器的误报率和漏检率又明显过高.同时恶意软件的加壳、混淆等对抗技术对该情况造成了更大的困扰.基于此,提出一种基于多特征集成学习的恶意软件静态检测框架.通过提取恶意软件的非PE(Portable Executable)结构特征、可见字符串与汇编码序列特征、PE结构特征以及函数调用关系5部分特征,构建与各部分特征相匹配的模型,采用Bagging集成和Stacking集成算法,提升模型的稳定性,降低过拟合的风险.然后采取权重策略投票算法对5部分集成模型的输出结果做进一步聚合.经过测试,多特征多模型聚合的检测准确率可达96.99%,该结果表明:与其他静态检测方法相比,该方法具有更好的恶意软件鉴别能力,对加壳、混淆等恶意软件同样具备较高的识别率.  相似文献   

14.
近年来,低级别微结构特征已被广泛应用于恶意软件检测。但是,微结构特征数据通常包含大量的冗余信息,且目前的检测方法并没有对输入微结构数据进行有效地预处理,这就造成恶意软件检测需要依赖于复杂的深度学习模型才能获得较高的检测性能。然而,深度学习检测模型参数量较大,难以在计算机底层得到实际应用。为了解决上述问题,本文提出了一种新颖的动态分析方法来检测恶意软件。首先,该方法创建了一个自动微结构特征收集系统,并从收集的通用寄存器(General-Purpose Registers, GPRs)数据中随机抽取子样本作为分类特征矩阵。相比于其他微结构特征, GPRs特征具有更丰富的行为特征信息,但也包含更多的噪声信息。因此,需要对GPRs数据进行特征区间分割,以降低数据复杂度并抑制噪声。本文随后采用词频-逆文档频率(Term Frequency-Inverse Document Frequency, TF-IDF)技术从抽取的特征矩阵中选择最具区分性的信息来进行恶意软件检测。TF-IDF技术可以有效降低特征矩阵的维度,从而提高检测效率。为了降低模型复杂度,并保证检测方法的性能,本文利用集成学习模型来识...  相似文献   

15.
目前, Android应用市场大多数应用程序均采取加壳的方法保护自身被反编译, 使得恶意应用的检测特征只能基于权限等来源于AndroidManifest.xml配置文件. 基于权限等特征的机器学习分类算法因为恶意应用与良性应用差异性变小导致检测效果不理想. 如果将更加细粒度的应用程序调用接口(Application P...  相似文献   

16.
针对当前Android恶意程序检测方法对未知应用程序检测能力不足的问题,提出了一种基于textCNN神经网络模型的Android恶意程序检测方法.该方法使用多种触发机制从不同层面上诱导激发程序潜在的恶意行为;针对不同层面上的函数调用,采用特定的hook技术对程序行为进行采集;针对采集到的行为日志,使用fastText算...  相似文献   

17.
为解决Android恶意软件检测问题,提出一种利用多特征基于改进随机森林算法的Android恶意软件静态检测模型.模型采用了基于行为的静态检测技术,选取Android应用的权限、四大组件、API调用以及程序的关键信息如动态代码、反射代码、本机代码、密码代码和应用程序数据库等属性特征,对特征属性进行优化选择,并生成对应的...  相似文献   

18.
针对恶意安卓应用程序检测中存在的特征维度大、检测效率低的问题,结合卷积神经网络CNN良好的特征提取和降维能力以及catboost算法无需广泛数据训练即可产生较好分类结果的优点,构建一个CNN-catboost混合恶意安卓应用检测模型.通过逆向工程获取安卓应用的权限、API包、组件、intent、硬件特性和OpCode特...  相似文献   

19.
情感分类是目前自然语言处理领域的一个具有挑战性的研究热点,该文主要研究基于半监督的文本情感分类问题。传统基于Co-training的半监督情感分类方法要求文本具备大量有用的属性集,其训练过程是线性时间的计算复杂度并且不适用于非平衡语料。该文提出了一种基于多分类器投票集成的半监督情感分类方法,通过选取不同的训练集、特征参数和分类方法构建了一组有差异的子分类器,每轮通过简单投票挑选出置信度最高的样本使训练集扩大一倍并更新训练模型。该方法使得子分类器可共享有用的属性集,具有对数时间复杂度并且可用于非平衡语料。实验结果表明我们的方法在不同语种、不同领域、不同规模大小,平衡和非平衡语料的情感分类中均具有良好效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号