首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 54 毫秒
1.
随着近些年深度学习的兴起,词语在计算机中的表示有了重大突破;而长期以来关键词提取算法均以词语作为特征进行计算,效果并不理想。因此,本文提出了一种基于深度学习工具word2vec的关键词提取算法。该算法首先使用word2vec将所有词语映射到一个更抽象的词向量空间中;然后基于词向量计算词语之间的相似度,最终通过词语聚类得到文章关键词。实验表明该算法对于篇幅长文章的关键词提取的准确率要明显高于其他算法。  相似文献   

2.
3.
基于组合词和同义词集的关键词提取算法*   总被引:3,自引:1,他引:3  
为了提高关键词的提取准确率,在对现有关键词抽取方法进行研究的基础之上,针对影响关键词提取准确率的分词技术、同义词现象等难点,提出了一种基于组合词和同义词集的关键词提取算法。该算法首先利用组合词识别算法极大地改进分词效果,能识别网页上绝大多数的新词、未登录词,为提高关键词自动抽取准确率奠定了坚实的基础;同时利用构造的同义词集,合并同义词的词频,避免了同义词在输出结果中同现;利用综合评分公式,充分考虑候选关键词的位置、长度、词性等特性。实验数据表明,该方法有较高的提取准确率。  相似文献   

4.
针对词汇语义的差异性对TextRank算法的影响进行了研究,提出一种基于词向量与TextRank的关键词抽取方法。利用FastText将文档集进行词向量表征,基于隐含主题分布思想和利用词汇间语义性的差异,构建TextRank的转移概率矩阵,最后进行词图的迭代计算和关键词抽取。实验结果表明,该方法的抽取效果相比于传统方法有明显提升,同时证明利用词向量能简单而有效地改善TextRank算法的性能。  相似文献   

5.
传统的TextRank算法进行关键词提取时词语之间的连接边采用权值均分的形式进行加权,未考虑词语的语义信息。针对这种情况,提出结合拓扑势与TextRank算法的关键词提取方法。方法使用词频和词语在文中的分布情况对词语加权作为词语的全局影响;使用拓扑势的思想结合词语全局影响计算词语间的转移概率作为词语的局部影响;将转移概率矩阵应用于传统TextRank算法中。实验表明,考虑词语全局及局部重要性等语义信息可有效提升TextRank算法的准确率和召回率。  相似文献   

6.
词向量在自然语言处理中起着重要的作用,近年来受到越来越多研究者的关注。然而,传统词向量学习方法往往依赖于大量未经标注的文本语料库,却忽略了单词的语义信息如单词间的语义关系。为了充分利用已有领域知识库(包含丰富的词语义信息),文中提出一种融合语义信息的词向量学习方法(KbEMF),该方法在矩阵分解学习词向量的模型上加入领域知识约束项,使得拥有强语义关系的词对获得的词向量相对近似。在实际数据上进行的单词类比推理任务和单词相似度量任务结果表明,KbEMF比已有模型具有明显的性能提升。  相似文献   

7.
谭婷婷  陈高荣  徐建 《计算机应用研究》2020,37(10):2907-2911,2916
关键词提取是诸多文本挖掘任务的前置任务,其精度直接影响了下游任务的性能。 以中文专利为研究对象,针对专利文本的特点,将关键词提取问题转换成词向量聚类问题,提出了一种基于cw2vec词向量的关键词提取方法,称为KEC。该方法首先利用科技文献的关键词以及开源词典构建领域词典;接着,基于领域词典对专利文本进行预处理获取候选关键词,并采用构建cw2vec模型获得候选关键词的词向量表示;最后,采用聚类算法提取最终的关键词。在真实的专利数据集上进行了实验验证,结果表明KEC在精确率、召回率、综合指标◢F▼1▽◣等指标项上优于现有的其它基于词聚类的关键词提取方法。  相似文献   

8.
田星  郑瑾  张祖平 《计算机科学》2018,45(7):186-189
通过对传统Jaccard算法的研究和改进,提出了一种基于词向量的Jaccard句子相似度算法。传统的Jaccard算法以句子的字面量为特征,因而在语义层面的相似度计算方面受到了一定的限制。而随着深度学习的兴起,尤其是词向量的提出,词语在计算机中的表示有了突破性的进展。该算法首先通过训练将每个词语映射为语义层面的高维向量,然后计算各个词向量之间的相似度,高于阈值α的作为共现部分,最终计算句子的相似度。实验表明,相较于传统的Jaccard算法,该算法在短文本相似度计算的准确率上有较明显的提升。  相似文献   

9.
本文主要研究关键词提取算法,在分析可能影响关键词提取的词语各种属性并将其量化的基础上,提出并实现了一种将分词与词性标注、文本预处理、线性加权算法、组合词生成与过滤、合并候选关键词等集成到一个完整框架中的模型算法。  相似文献   

10.
关键词提取是指是从文本中提炼出能够概括文献内容的词或词组。关键词提取是文本处理中的一项十分重要的关键技术,针对关键词提取受分词效果影响以及统计偏差等问题,提出了一种融合多特征的中文关键词提取方法。该方法通过考虑词频、词长、词性、位置、互联网词典、停用词典等6方面因素对关键词权重的影响,分别对这些因素提出了量化方案,再结合线性加权、组合词生成与过滤等技术进行关键词提取。文章实验中,采用从中国知网下载的包括环境、信息科学、交通、教育、经济、文史、化学、医药、农业、政治共10个类别论文的数据,论文中都含有作者自拟的关键词。实验结果表明,在候选词数量N为5的情况下,其关键词提取的近似匹配准确率为54.8%,召回率为65.1%。该方法不仅解决了关键词提取中受到分词影响而导致的召回率低的问题,而且能够针对文本中出现频率不高但是对于文本意义表达很重要的词进行提取,其提取的关键词在表达文本含义的方面要明显优于基于统计的方法,实用价值更大。  相似文献   

11.
尹红  陈雁  李平 《中文信息学报》2019,33(11):107-114
关键短语提取是自然语言处理领域的一个重要子任务,其目的是自动识别出文本中的重要短语,现有方法主要强调词语间相关关系和词语自身影响力会影响关键短语提取效果。考虑到关键短语应准确地表示文档主题这一特点,该文提出一种基于主题熵的关键短语提取算法。该算法利用隐含狄利克雷分布训练文档和词的主题分布,并结合两个主题分布来表示特定文档下的词主题分布,然后计算词主题分布的信息熵即主题熵来表示词语自身影响力,最后在词共现网络上使用随机游走方法计算每个候选短语的得分。在6个公开数据集上的实验结果表明,与现有的无监督关键短语提取算法相比,该算法在F1指标上能提高2.61%~6.98%。  相似文献   

12.
基于机器学习的网页主题词自动抽取   总被引:2,自引:0,他引:2  
主题词在信息处理和信息检索过程中有广泛的用途,然而大量网页没有主题词,手工抽取主题词是一个繁重的过程,可以将主题词自动抽取看作是分类问题,充分利用网页的结构信息并且使用有监督的机器学习方法来自动地抽取网页中的主题词,试验结果表明该算法具有实用的价值。  相似文献   

13.
各类应用领域的文本数据日益增多,如何从这些海量数据中迅速准确地提取核心内容,已成为关键词抽取的主要任务.提出一种基于词和文档嵌入的关键词抽取方法,通过计算单词与文档在同一维度上的向量表示,得出每个单词与文档之间的语义相似度,将其作为无向图中每个单词节点的初始权重.接着使用带语义偏向的随机游走策略,计算出每个单词以及候选词的分值.最后选取得分较高的前N个候选词作为最终关键词.在公开数据集上的实验结果表明,该算法在准确率、召回率、F值上均超过现有的主流关键词抽取方法,极大提高了关键词自动抽取的效率.  相似文献   

14.
各类应用领域的文本数据日益增多,如何从这些海量数据中迅速准确地提取核心内容,已成为关键词抽取的主要任务.提出一种基于词和文档嵌入的关键词抽取方法,通过计算单词与文档在同一维度上的向量表示,得出每个单词与文档之间的语义相似度,将其作为无向图中每个单词节点的初始权重.接着使用带语义偏向的随机游走策略,计算出每个单词以及候选词的分值.最后选取得分较高的前N个候选词作为最终关键词.在公开数据集上的实验结果表明,该算法在准确率、召回率、F值上均超过现有的主流关键词抽取方法,极大提高了关键词自动抽取的效率.  相似文献   

15.
面向文本的关键词自动提取一直以来是自然语言处理领域的一个关键基础问题和研究热点.特别是,随着当前对文本数据应用需求的不断增加,使得关键词提取技术进一步得到研究者的广泛关注.尽管近年来关键词提取技术得到长足的发展,但提取结果目前还远未取得令人满意的效果.为了促进关键词提取问题的解决,本文对近年来国内、外学者在该研究领域取得的成果进行了系统总结,具体包括候选关键词生成、特征工程和关键词提取三个主要步骤,并对未来可能的研究方向进行了探讨和展望.不同于围绕提取方法进行总结的综述文献,本文主要围绕着各种方法使用的特征信息归纳总结现有成果,这种从特征驱动的视角考察现有研究成果的方式有助于综合利用现有特征或提出新特征,进而提出更有效的关键词提取方法.  相似文献   

16.
一种基于信息熵的中文高频词抽取算法   总被引:9,自引:0,他引:9  
任禾  曾隽芳 《中文信息学报》2006,20(5):42-43,90
为扩展分词词典,提高分词的准确率,本文提出了一种基于信息熵的中文高频词抽取算法,其结果可以用来识别未登录词并扩充现有词典。我们首先对文本进行预处理,将文本中的噪音字和非中文字符转化为分隔符,这样文本就可以被视为用分隔符分开的中文字符串的集合,然后统计这些中文字符串的所有子串的相关频次信息,最后根据这些频次信息计算每一个子串的信息熵来判断其是否为词。实验证明,该算法不仅简单易行,而且可以比较有效地从文本中抽取高频词,可接受率可达到91.68%。  相似文献   

17.
分词系统由于未将合成词收录进词典,因此不能识别合成词。针对该问题,提出一种基于词共现有向图的中文合成词提取算法。采用词性探测方法从文本中获取词串,由所获词串生成词共现有向图,并借鉴Bellman-Ford算法思想,从词共现有向图中搜索多源点长度最长且权重值满足给定条件的路径,该路径所对应的词串即为合成词。实验结果显示,该算法的合成词提取正确率达到91.16%。  相似文献   

18.
该文旨在探究深度学习中汉语字向量和词向量的有效结合方式。我们在以词作为基础语义单元和以字作为基础语义单元这两个方向进行探究,实验了字、词信息多种浅层结合方式和深层结合方式。为了验证该文提出的结合方式的有效性,我们改进了一种compare-aggregate模型,并在基于文档的问答系统上进行了实验。实验结果表明,有效的汉语字向量和词向量的结合方式超越了单独的字向量和词向量,提升了基于文档的问答系统的性能,使其结果与目前最好的结果可媲美。  相似文献   

19.
在分别研究了基于信息熵和基于词频分布变化的术语抽取方法的情况下,该文提出了一种信息熵和词频分布变化相结合的术语抽取方法。信息熵体现了术语的完整性,词频分布变化体现了术语的领域相关性。通过应用信息熵,即将信息熵结合到词频分布变化公式中进行术语抽取,且应用简单语言学规则过滤普通字符串。实验表明,在汽车领域的语料上,应用该方法抽取出1300个术语,其正确率达到73.7%。结果表明该方法对低频术语有更好的抽取效果,同时抽取出的术语结构更完整。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号