首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quiescent cancer stem cells (CSCs) have long been considered to be a source of tumor initiation. However, identification and isolation of these cells have been hampered by the fact that commonly used fluorescent markers are not sufficiently stable, both chemically and photophysically, to allow tracking over an extended period of time. Here, it is shown that fluorescent nanodiamonds (FNDs) are well suited for this application. Genotoxicity tests of FNDs with comet and micronucleus assays for human fibroblasts and breast cancer cells indicate that the nanoparticles neither cause DNA damage nor impair cell growth. Using AS‐B145‐1R breast cancer cells as the model cell line for CSC, it is found that the FND labeling outperforms 5‐ethynyl‐2′‐deoxyuridine (EdU) and carboxyfluorescein diacetate succinimidyl ester (CFSE) in regards to its long‐term tracking capability (>20 d). Moreover, through a quantification of their stem cell activity by measuring mammosphere‐forming efficiencies (MFEs) and self‐renewal rates, the FND‐positive cells are identified to have an MFE twice as high as that of the FND‐negative cells isolated from the same dissociated mammospheres. Thus, the nanoparticle‐based labeling technique provides an effective new tool for tracking and finding slow‐proliferating/quiescent CSCs in cancer research.  相似文献   

2.
While nanoparticles are an increasingly popular choice for labeling and tracking stem cells in biomedical applications such as cell therapy, their intracellular fate and subsequent effect on stem cell differentiation remain elusive. To establish an effective stem cell labeling strategy, the intracellular nanocrystal concentration should be minimized to avoid adverse effects, without compromising the intensity and persistence of the signal necessary for long‐term tracking. Here, the use of second‐harmonic generating barium titanate nanocrystals is reported, whose achievable brightness allows for high contrast stem cell labeling with at least one order of magnitude lower intracellular nanocrystals than previously reported. Their long‐term photostability enables to investigate quantitatively at the single cell level their cellular fate in hematopoietic stem cells (HSCs) using both multiphoton and electron microscopy. It is found that the concentration of nanocrystals in proliferative multipotent progenitors is over 2.5‐fold greater compared to quiescent stem cells; this difference vanishes when HSCs enter a nonquiescent, proliferative state, while their potency remains unaffected. Understanding the nanoparticle stem cell interaction allows to establish an effective and safe nanoparticle labeling strategy into somatic stem cells that can critically contribute to an understanding of their in vivo therapeutic potential.  相似文献   

3.
Recent experimental evidence suggests that acute myeloid leukaemias may originate from multiple clones of malignant cells. Nevertheless, it is not known how the observed clones may differ with respect to cell properties, such as proliferation and self-renewal. There are scarcely any data on how these cell properties change due to chemotherapy and relapse. We propose a new mathematical model to investigate the impact of cell properties on the multi-clonal composition of leukaemias. Model results imply that enhanced self-renewal may be a key mechanism in the clonal selection process. Simulations suggest that fast proliferating and highly self-renewing cells dominate at primary diagnosis, while relapse following therapy-induced remission is triggered mostly by highly self-renewing but slowly proliferating cells. Comparison of simulation results to patient data demonstrates that the proposed model is consistent with clinically observed dynamics based on a clonal selection process.  相似文献   

4.
Stem cells are characterized by their dual ability to reproduce themselves (self-renew) and specialize (differentiate), yielding a plethora of daughter cells that maintain and regenerate tissues. In contrast to their embryonic counterparts, adult stem cells retain their unique functions only if they are in intimate contact with an instructive microenvironment, termed stem cell niche. In these niches, stem cells integrate a complex array of molecular signals that, in concert with induced cell-intrinsic regulatory networks, control their function and balance their numbers in response to physiologic demands. This progress report provides a perspective on how advanced materials technologies could be used (i) to engineer and systematically analyze specific aspects of functional stem cells niches in a controlled fashion in vitro and (ii) to target stem cell niches in vivo. Such "artificial niches" constitute potent tools for elucidating stem cell regulatory mechanisms with the capacity to directly impact the development of novel therapeutic strategies for tissue regeneration.  相似文献   

5.
A Monte Carlo simulation of multiple trabecular bone cavities in adult bone was developed and the absorbed radiation dose factors evaluated for 3H and 14C. The model was developed to assess the dose from radionuclide uptake in quiescent bone, but also the effects of temporal changes in bone turnover by incorporating bone-modelling units (BMU). Absorbed dose fractions were calculated for target regions that include the endosteal layer where radiation-sensitive stem cells in bone marrow are considered to reside preferentially. There were large differences in the absorbed fractions for two types of bone surface, quiescent and forming. Tritium in quiescent bone results in a dose to the endosteum about 20 times that for the same activity in forming bone surface irradiating osteoblasts. When the quiescent bone surface source was extended from an infinitely thin layer to a more realistic 1 microm thick, the tritium absorbed fractions for endosteum and red marrow targets fell by more than 2-fold.  相似文献   

6.
It is very important to understand the onset and growth pattern of breast primary tumours as well as their metastatic dissemination. In most cases, it is the metastatic disease that ultimately kills the patient. There is increasing evidence that cancer stem cells are closely linked to the progression of the metastatic tumour. Here, we investigate stem cell seeding to an avascular tumour site using an agent-based stochastic model of breast cancer metastatic seeding. The model includes several important cellular features such as stem cell symmetric and asymmetric division, migration, cellular quiescence, senescence, apoptosis and cell division cycles. It also includes external features such as stem cell seeding frequency and location. Using this model, we find that cell seeding rate and location are important features for tumour growth. We also define conditions in which the tumour growth exhibits decremented and exponential growth patterns. Overall, we find that seeding, senescence and division limit affect not only the number of stem cells, but also their spatial and temporal distribution.  相似文献   

7.
To avoid large open surgery using scaffold transplants, small‐sized cell carriers are employed to repair complexly shaped tissue defects. However, most cell carriers show poor cell adherences and viability. Therefore, polyhydroxyalkanoate (PHA), a natural biopolymer, is used to prepare highly open porous microspheres (OPMs) of 300–360 µm in diameter, combining the advantages of microspheres and scaffolds to serve as injectable carriers harboring proliferating stem cells. In addition to the convenient injection to a defected tissue, and in contrast to poor performances of OPMs made of polylactides (PLA OPMs) and traditional less porous hollow microspheres (PHA HMs), PHA OPMs present suitable surface pores of 10–60 µm and interconnected passages with an average size of 8.8 µm, leading to a high in vitro cell adhesion of 93.4%, continuous proliferation for 10 d and improved differentiation of human bone marrow mesenchymal stem cells (hMSCs). PHA OPMs also support stronger osteoblast‐regeneration compared with traditional PHA HMs, PLA OPMs, commercial hyaluronic acid hydrogels, and carrier‐free hMSCs in an ectopic bone‐formation mouse model. PHA OPMs protect cells against stresses during injection, allowing more living cells to proliferate and migrate to damaged tissues. They function like a micro‐Noah's Ark to safely transport cells to a defect tissue.  相似文献   

8.
Vascular smooth muscle cells (SMCs) exhibit different types of calcium dynamics. Static vascular tone is associated with unsynchronized calcium waves and the developed force depends on the number of recruited cells. Global calcium transients synchronized among a large number of cells cause rhythmic development of force known as vasomotion. We present experimental data showing a considerable heterogeneity in cellular calcium dynamics in the vascular wall. In stimulated vessels, some SMCs remain quiescent, whereas others display waves of variable frequency. At the onset of vasomotion, all SMCs are enrolled into synchronized oscillation.Simulations of coupled SMCs show that the experimentally observed cellular recruitment, the presence of quiescent cells and the variation in oscillation frequency may arise if the cell population is phenotypically heterogeneous. In this case, quiescent cells can be entrained at the onset of vasomotion by the collective driving force from the synchronized oscillations in the membrane potential of the surrounding cells. Partial synchronization arises with an increase in the concentration of cyclic guanosine monophosphate, but in a heterogeneous cell population complete synchronization also requires a high-conductance pathway that provides strong coupling between the cells.  相似文献   

9.
Recently, cancer stem cells (CSCs) have been identified in many types of cancers, such as colorectal cancer (CRC). CSCs seem to be involved in initiation, growth, and tumor metastasis, as well as in radio- and chemotherapy failures. CSCs appears as new biological targets for cancer therapy, requiring the development of noninvasive cell sorting methods. In this study, we used sedimentation field flow fractionation (SdFFF) to prepare enriched populations of CSCs from eight cell lines corresponding to different CRC grades. On the basis of phenotypic and functional characterizations, "hyperlayer" elution resulted in a fraction overexpressing CSC markers (CD44, CD166, EpCAM) for all cell lines. CSCs were eluted in the last fraction for seven out of eight cell lines, but in the first for HCT116. These results suggest, according to the literature, that two different pools of CSCs exist, quiescent and activated, which can both be sorted by SdFFF. Moreover, according to CSC properties, enriched fractions are able to form colonies.  相似文献   

10.
Cell adhesion is an important step in cell survival, and in the proliferation of anchorage-dependent cells, whose dimensions can be controlled by micro-patterning of the cell-adhesive extracellular matrix. To fabricate a micro-patterned fibronectin substrate with spacings ranging from 0.9 microm to 20 microm, we made a replica mold using e-beam lithography. The physiological behavior of human dermal fibroblasts (HDFs) on a substrate with a gradient of pattern spacings from 0.9 microm to 20 microm was evaluated after 4.5 hours and 2 days of culture. The number of proliferating cells on the fibronectin-patterned surface increased as the spacing between strip lines increased to 11 micron. However, the number of cells gradually decreased when the pattern spacing exceeded 11 microm. These findings demonstrate that the submicron-patterned topography of a substrate plays important roles in HDF survival and proliferation.  相似文献   

11.
12.
The ability to encapsulate cells in three-dimensional (3D) environments is potentially of benefit for tissue engineering and regenerative medicine. In this paper, we introduce pullulan methacrylate (PulMA) as a promising hydrogel platform for creating cell-laden microscale tissues. The hydration and mechanical properties of PulMA were demonstrated to be tunable through modulation of the degree of methacrylation and gel concentration. Cells encapsulated in PulMA exhibited excellent viability. Interestingly, while cells did not elongate in PulMA hydrogels, cells proliferated and organized into clusters, the size of which could be controlled by the hydrogel composition. By mixing with gelatin methacrylate (GelMA), the biological properties of PulMA could be enhanced as demonstrated by cells readily attaching to, proliferating, and elongating within the PulMA/GelMA composite hydrogels. These data suggest that PulMA hydrogels could be useful for creating complex, cell-responsive microtissues, especially for applications that require controlled cell clustering and proliferation.  相似文献   

13.
14.
The ability to self-renew and differentiate into multiple types of blood and immune cells renders hematopoietic stem and progenitor cells (HSPCs) valuable for clinical treatment of hematopoietic pathologies and as models of stem cell differentiation for tissue engineering applications. To study directed hematopoietic stem cell (HSC) differentiation and identify the conditions that recreate the native bone marrow environment, combinatorial biomaterials that exhibit lateral variations in chemical and mechanical properties are employed. New experimental approaches are needed to facilitate correlating cell differentiation stage with location in the culture system. We demonstrate that multivariate analysis of time-of-flight secondary ion mass spectrometry (TOF-SIMS) data can be used to identify the differentiation state of individual hematopoietic cells (HCs) isolated from mouse bone marrow. Here, we identify primary HCs from three distinct stages of B cell lymphopoiesis at the single cell level: HSPCs, common lymphoid progenitors, and mature B cells. The differentiation state of individual HCs in a test set could be identified with a partial least-squares discriminant analysis (PLS-DA) model that was constructed with calibration spectra from HCs of known differentiation status. The lowest error of identification was obtained when the intrapopulation spectral variation between the cells in the calibration and test sets was minimized. This approach complements the traditional methods that are used to identify HC differentiation stage. Further, the ability to gather mass spectrometry data from single HSCs cultured on graded biomaterial substrates may provide significant new insight into how HSPCs respond to extrinsic cues as well as the molecular changes that occur during cell differentiation.  相似文献   

15.
Stem‐cell‐based regenerative medicine holds great promise in clinical practices. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, is not fully understood, which is critical to understand the process and the underlying mechanism of regeneration for better therapeutic effects. Herein, we develop a dual‐labeling strategy to in situ visualize the fate of transplanted stem cells in vivo by combining the exogenous near‐infrared fluorescence imaging in the second window (NIR‐II) and endogenous red bioluminescence imaging (BLI). The NIR‐II fluorescence of Ag2S quantum dots is employed to dynamically monitor the trafficking and distribution of all transplanted stem cells in vivo due to its deep tissue penetration and high spatiotemporal resolution, while BLI of red‐emitting firefly luciferase (RfLuc) identifies the living stem cells after transplantation in vivo because only the living stem cells express RfLuc. This facile strategy allows for in situ visualization of the dynamic trafficking of stem cells in vivo and the quantitative evaluation of cell translocation and viability with high temporal and spatial resolution, and thus reports the fate of transplanted stem cells and how the living stem cells help, regeneration, for an instance, of a mouse with acute liver failure.  相似文献   

16.
Techniques for manipulating, separating, and trapping particles and cells are highly desired in today's bioanalytical and biomedical field. The microfluidic chip-based acoustic noncontact trapping method earlier developed within the group now provides a flexible platform for performing cell- and particle-based assays in continuous flow microsystems. An acoustic standing wave is generated in etched glass channels (600x61 microm2) by miniature ultrasonic transducers (550x550x200 microm3). Particles or cells passing the transducer will be retained and levitated in the center of the channel without any contact with the channel walls. The maximum trapping force was calculated to be 430+/-135 pN by measuring the drag force exerted on a single particle levitated in the standing wave. The temperature increase in the channel was characterized by fluorescence measurements using rhodamine B, and levels of moderate temperature increase were noted. Neural stem cells were acoustically trapped and shown to be viable after 15 min. Further evidence of the mild cell handling conditions was demonstrated as yeast cells were successfully cultured for 6 h in the acoustic trap while being perfused by the cell medium at a flowrate of 1 microL/min. The acoustic microchip method facilitates trapping of single cells as well as larger cell clusters. The noncontact mode of cell handling is especially important when studies on nonadherent cells are performed, e.g., stem cells, yeast cells, or blood cells, as mechanical stress and surface interaction are minimized. The demonstrated acoustic trapping of cells and particles enables cell- or particle-based bioassays to be performed in a continuous flow format.  相似文献   

17.
Triple-negative breast cancer (TNBC) displays a highly aggressive nature that originates from a small subpopulation of TNBC stem cells (TNBCSCs), and these TNBCSCs give rise to chemoresistance, tumor metastasis, and recurrence. Unfortunately, traditional chemotherapy eradicates normal TNBC cells but fails to kill quiescent TNBCSCs. To explore a new strategy for eradicating TNBCSCs, a disulfide-mediated self-assembly nano-prodrug that can achieve the co-delivery of ferroptosis drug, differentiation-inducing agent, and chemotherapeutics for simultaneous TNBCSCs and TNBC treatment, is reported. In this nano-prodrug, the disulfide bond not only induces self-assembly behavior of different small molecular drug but also serves as a glutathione (GSH)-responsive trigger in controlled drug release. More importantly, the differentiation-inducing agent can transform TNBCSCs into normal TNBC cells, and this differentiation with chemotherapeutics provides an effective approach to indirectly eradicate TNBCSCs. In addition, ferroptosis therapy is essentially different from the apoptosis-induced cell death of differentiation or chemotherapeutic, which causes cell death to both TNBCSCs and normal TNBC cells. In different TNBC mouse models, this nano-prodrug significantly improves anti-tumor efficacy and effectively inhibits the tumor metastasis. This all-in-one strategy enables controlled drug release and reduces stemness-related drug resistance, enhancing the chemotherapeutic sensitivity in TNBC treatment.  相似文献   

18.
We report the ability to move and arrange patterns of live embryonic stem cells using holographic optical tweezers. Single cell suspensions of mouse embryonic stem cells were manipulated with holographic optical tweezers into a variety of patterns including lines, curves and circles. Individual cells were also lifted out of the sample plane highlighting the potential for 3D positional control. Trypan blue dye exclusion and Live/Dead? staining (CMFDA?1, EthHD?1) showed that the cells were still viable after manipulation with the optical tweezers. The ability to move individual stem cells into specific, pre-defined patterns provides a method to study how arrangement and associated small-scale interactions occur between neighbouring cells.  相似文献   

19.
Stem cell-based therapy has recently emerged for use in novel therapeutics for incurable diseases. For successful recovery from neurologic diseases, the most pivotal factor is differentiation and directed neuronal cell growth. In this study, we fabricated three different widths of a micro-pattern on polydimethylsiloxane (PDMS; 1, 2, and 4 microm). Surface modification of the PDMS was investigated for its capacity to manage proliferation and differentiation of neural-like cells from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). Among the micro-patterned PDMS fabrications, the 1 microm-patterned PDMS significantly increased cell proliferation and most of the cells differentiated into neuronal cells. In addition, the 1 microm-patterned PDMS induced an increase in cytosolic calcium, while the differentiated cells on the flat and 4 microm-patterned PDMS had no response. PDMS with a 1 microm pattern was also aligned to direct orientation within 10 degrees angles. Taken together, micro-patterned PDMS supported UCB-MSC proliferation and induced neural like-cell differentiation. Our data suggest that micro-patterned PDMS might be a guiding method for stem cell therapy that would improve its therapeutic action in neurological diseases.  相似文献   

20.
Methods capable of nondestructively collecting high-quality, real-time chemical information from living human stem cells are of increasing importance given the escalating relevance of stem cells in therapeutic and regenerative medicines. Raman spectroscopy is one such technique that can nondestructively collect real-time chemical information. Living cells uptake gold nanoparticles and transport these particles through an endosomal pathway. Once inside the endosome, nanoparticles aggregate into clusters that give rise to large spectroscopic enhancements that can be used to elucidate local chemical environments through the use of surface-enhanced Raman spectroscopy. This report uses 40-nm colloidal gold nanoparticles to create volumes of surface-enhanced Raman scattering (SERS) within living human-adipose-derived adult stem cells enabling molecular information to be monitored. We exploit this method to spectroscopically observe chemical changes that occur during the adipogenic differentiation of human-adipose-derived stem cells over a period of 22 days. It is shown that intracellular SERS is able to detect the production of lipids as little as one day after the onset of adipogenesis and that a complex interplay between lipids, proteins, and chemical messengers can be observed shortly thereafter. After 22 days of differentiation, the cells show visible and spectroscopic indications of completed adipogenesis yet still share spectral features common to the progenitor stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号