首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Convergence and stability are main issues when an asymptotical method like the Homotopy Perturbation Method (HPM) has been used to solve differential equations. In this paper, convergence of the solution of fractional differential equations is maintained. Meanwhile, an effective method is suggested to select the linear part in the HPM to keep the inherent stability of fractional equations. Riccati fractional differential equations as a case study are then solved, using the Enhanced Homotopy Perturbation Method (EHPM). Current results are compared with those derived from the established Adams–Bashforth–Moulton method, in order to verify the accuracy of the EHPM. It is shown that there is excellent agreement between the two sets of results. This finding confirms that the EHPM is powerful and efficient tool for solving nonlinear fractional differential equations.  相似文献   

2.
孙宝  张文超  李占龙  范凯 《控制与决策》2022,37(10):2433-2442
近年来,分数阶微积分作为一种工具已经被广泛应用于工程中的各个领域.较常阶分数阶微积分算子而言,变阶分数阶微积分算子能够更加准确地描述复杂系统的物理特性,变阶分数阶微积分建模作为一个强大的数学工具,为工程建模提供了便利.在前人优秀研究成果的基础上,结合近几年的国内外相关学者的研究成果对变分数阶微积分方程的研究作全面的综述.以变阶分数阶微分方程、变阶时间分数阶对流-扩散方程、变阶分数阶反应-扩散方程、变阶分数阶积分-微分方程和时滞变阶分数阶微分方程为主要研究对象,从变分数阶微积分算子的相关定义、模型、数值解及在工程中的相关应用等几个方面进行介绍.研究发现,近年来的算法多集中在多项式算法的基础上,通过构建不同的运算矩阵来实现变阶微分方程到代数方程组的转换.该综述可为相关领域的研究学者提供参考.  相似文献   

3.
In this paper, some attractivity results for fractional functional differential equations are obtained by using the fixed point theorem. By constructing equivalent fractional integral equations, research on the attractivity of fractional functional and neutral differential equations is skillfully converted into a discussion about the existence of fixed points for equivalent fractional integral equations. Two examples are also provided to illustrate our main results.  相似文献   

4.
Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional differential equations. For that reason we need a reliable and efficient technique for the solution of fractional differential equations. This paper deals with the numerical solution of a class of fractional differential equations. The fractional derivatives are described in the Caputo sense. Our main aim is to generalize the Legendre operational matrix to the fractional calculus. In this approach, a truncated Legendre series together with the Legendre operational matrix of fractional derivatives are used for numerical integration of fractional differential equations. The main characteristic behind the approach using this technique is that it reduces such problems to those of solving a system of algebraic equations thus greatly simplifying the problem. The method is applied to solve two types of fractional differential equations, linear and nonlinear. Illustrative examples are included to demonstrate the validity and applicability of the presented technique.  相似文献   

5.
In this paper, a new numerical method for solving fractional differential equations (FDEs) is presented. The method is based upon the fractional Taylor basis approximations. The operational matrix of the fractional integration for the fractional Taylor basis is introduced. This matrix is then utilized to reduce the solution of the fractional differential equations to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of this technique.   相似文献   

6.
An analytic study on linear systems of fractional differential equations with constant coefficients is presented. We briefly describe the issues of existence, uniqueness and stability of the solutions for two classes of linear fractional differential systems. This paper deals with systems of differential equations of fractional order, where the orders are equal to real number or rational numbers between zero and one. Exact solutions for initial value problems of linear fractional differential systems are analytically derived. Existence and uniqueness results are proved for two classes. The presented results are illustrated by analyzing some examples to demonstrate the effectiveness of the presented analytical approaches.  相似文献   

7.
We present an efficient approach for solving nonlinear fractional differential equations. The convergence analysis of the approach is studied. To demonstrate the working of the presented approach, we consider three special cases of nonlinear fractional differential equations. The results of theses examples and comparison with different methods provide confirmation for the validity of the proposed approach.  相似文献   

8.

Finding the approximate solution of differential equations, including non-integer order derivatives, is one of the most important problems in numerical fractional calculus. The main idea of the current paper is to obtain a numerical scheme for solving fractional differential equations of the second order. To handle the method, we first convert these types of differential equations to linear fractional Volterra integral equations of the second kind. Afterward, the solutions of the mentioned Volterra integral equations are estimated using the discrete collocation method together with thin plate splines as a type of free-shape parameter radial basis functions. Since the scheme does not need any background meshes, it can be recognized as a meshless method. The proposed approach has a simple and computationally attractive algorithm. Error analysis is also studied for the presented method. Finally, the reliability and efficiency of the new technique are tested over several fractional differential equations and obtained results confirm the theoretical error estimates.

  相似文献   

9.
In this paper, we deal with the control systems described by a large class of fractional semilinear parabolic equations. Firstly, we reformulate the fractional parabolic equations into abstract fractional differential equations associated with a semigroup on an appropriate Banach space. Secondly, we introduce a suitable concept on a mild solution for this kind of fractional parabolic equations and present the existence and uniqueness of mild solution by utilizing the theory of semigroup of linear operator, nonlinear analysis method and fixed point theorem. Then, the approximate controllability of the fractional semilinear parabolic equations is formulated and proved. At the end of the paper, an example is given to illustrate our main results.  相似文献   

10.
In this paper, we present an efficient algorithm for solving a fractional oscillator using the differential transform method. The fractional derivatives are described in the Caputo sense. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of a fractional oscillator. The method provides the solution in the form of a rapidly convergent series. Numerical examples are used to illustrate the preciseness and effectiveness of the proposed method.  相似文献   

11.
为了保留更多的纹理信息,构建了基于具有阻止扩散的梯度阈值k,和分数阶微分的阶数v平衡关系的分数偏微分方程的图像去噪模型,其有效结合了分数微积分理论和偏微分方程方法,并通过分数微分掩模算子实现了数值.超声体模信验和体内成像表明:基于分数阶微分的各向异性扩散方法可以提高组织的信噪比(SNR)和超声图像的质量.  相似文献   

12.
In this paper, we propose a new approach for solving fractional partial differential equations, which is very easy to use and can also be applied to equations of other types. The main advantage of the method lies in its flexibility for obtaining the approximate solutions of time fractional and space fractional equations. Using this approach, we convert a fractional partial differential equation into a nonlinear programming problem. Several numerical examples are used to demonstrate the effectiveness and accuracy of the method.  相似文献   

13.

We present a new numerical method for solving fractional delay differential equations. The method is based on Taylor wavelets. We establish an exact formula to determine the Riemann–Liouville fractional integral of the Taylor wavelets. The exact formula is then applied to reduce the problem of solving a fractional delay differential equation to the problem of solving a system of algebraic equations. Several numerical examples are presented to show the applicability and the effectiveness of this method.

  相似文献   

14.
An analytic study on linear systems of degenerate fractional differential equations with constant coefficients is presented. We discuss the existence and uniqueness of solutions for the initial value problem of linear degenerate fractional differential systems. The exponential estimation of the degenerate fractional differential system with delay and sufficient conditions for the finite time stability for the system are obtained. Finally, an example is provided to illustrate the effectiveness of the presented analytical approaches.  相似文献   

15.
分数阶偏微分方程在图像处理中的应用已受到了广泛的关注,尤其在图像去噪和图像超分辨率(SR)重建方面,目前的研究成果已显示了分数阶应用的优势与效果。对分数阶微积分在图像处理中的作用进行了分析;介绍并讨论了分数阶偏微分方程在图像去噪和图像超分辨率重建中的相关理论与模型;通过仿真实验表明,基于分数阶偏微分方程的方法在去噪和减少阶梯效应等方面比整数阶偏微分方程更具有优势;最后指出了未来的相关研究问题。  相似文献   

16.
In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelet approximations. The properties of Legendre wavelets are first presented. These properties are then utilized to reduce the fractional ordinary differential equations (FODEs) to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. Results show that this technique can solve the linear and nonlinear fractional ordinary differential equations with negligible error compared to the exact solution.  相似文献   

17.
In this article, the fractional derivatives in the sense of modified Riemann-Liouville derivative and the Exp-function method are employed for constructing the exact solutions of nonlinear time fractional partial differential equations in mathematical physics. As a result, some new exact solutions for them are successfully established. It is indicated that the solutions obtained by the Exp-function method are reliable, straightforward and effective method for strongly nonlinear fractional partial equations with modified Riemann-Liouville derivative by Jumarie's. This approach can also be applied to other nonlinear time and space fractional differential equations.   相似文献   

18.
In this paper, we develop the theory of fractional hybrid differential equations involving Riemann-Liouville differential operators of order 0<q<1. An existence theorem for fractional hybrid differential equations is proved under mixed Lipschitz and Carathéodory conditions. Some fundamental fractional differential inequalities are also established which are utilized to prove the existence of extremal solutions. Necessary tools are considered and the comparison principle is proved which will be useful for further study of qualitative behavior of solutions.  相似文献   

19.
The concept of Lie–Backlund symmetry plays a fundamental role in applied mathematics. It is clear that in order to find conservation laws for a given partial differential equations (PDEs) or fractional differential equations (FDEs) by using Lagrangian function, firstly, we need to obtain the symmetries of the considered equation.Fractional derivation is an efficient tool for interpretation of mathematical methods. Many applications of fractional calculus can be found in various fields of sciences as physics (classic, quantum mechanics and thermodynamics), biology, economics, engineering and etc. So in this paper, we present some effective application of fractional derivatives such as fractional symmetries and fractional conservation laws by fractional calculations. In the sequel, we obtain our results in order to find conservation laws of the time-fractional equation in some special cases.  相似文献   

20.
A class of dynamic control systems described by nonlinear fractional stochastic differential equations in Hilbert spaces is considered. Using fixed point technique, fractional calculations, stochastic analysis technique and methods adopted directly from deterministic control problems, a new set of sufficient conditions for approximate controllability of fractional stochastic differential equations is formulated and proved. In particular, we discuss the approximate controllability of nonlinear fractional stochastic control system under the assumptions that the corresponding linear system is approximately controllable. The results in this paper are generalization and continuation of the recent results on this issue. An example is provided to show the application of our result. Finally as a remark, the compactness of semigroup is not assumed and subsequently the conditions are obtained for exact controllability result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号