共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解决数据稀疏性对推荐算法预测准确度的影响,本文提出了一种融合社交信任的矩阵分解推荐算法.在相关数据集上实验结果表明,预测的平均绝对误差和均方根误差都得到了明显的改善. 相似文献
2.
随着社交网络的发展,融合社交信息的推荐成为推荐领域中的一个研究热点.基于矩阵分解的协同过滤推荐方法(简称为矩阵分解推荐方法)因其算法可扩展性好及灵活性高等诸多特点,成为研究人员在其基础之上进行社交推荐模型构建的重要原因.本文围绕基于矩阵分解的社交推荐模型,依据模型的构建方式对社交推荐模型进行综述.在实际数据上对已有代表性社交推荐方法进行对比,分析各种典型社交推荐模型在不同视角下的性能(如整体用户、冷启动用户、长尾物品).最后,分析基于矩阵分解的社交推荐模型及其求解算法存在的问题,并对未来研究方向与发展趋势进行了展望. 相似文献
3.
4.
《计算机应用与软件》2014,(7)
推荐系统已经得到了广泛的研究和应用,但是大多数推荐系统中仍存在一些导致系统推荐质量低下的不足:用户-信息项矩阵的大规模性和数据稀疏性,假设所有的用户都是互相独立的,该假设忽略了用户之间的联系。为了提高推荐系统模型的准确性,提出一种新型的概率因子分析方法。该方法对社交网络图进行挖掘,并将挖掘出的信任关系应用到推荐系统中,从而把用户朋友的喜好与用户的兴趣融合在一起,用于提高推荐质量。理论分析和实验结果表明,该方法复杂度是线性的,相对于传统方法表现出了很大的优越性,适合应用于大规模数据处理。 相似文献
5.
社交网站的快速发展和普及使得实现高效的好友推荐成为了一个热点问题,而矩阵分解算法是被业界广泛采用的方法.虽然传统的矩阵分解算法能够带来良好的效果,但是仍然存在一些问题.首先,算法没有充分利用用户之间的社交网络结构化关系;其次,算法依赖的用户-物品评分矩阵只有二级评分不能充分表达用户的喜好.提出了一种基于矩阵分解的社交网络正则化推荐模型,利用社交网络中用户的近邻关系进行建模,并将其作为一种辅助信息融合到矩阵分解模型当中,该模型能够解决传统矩阵分解面临的问题.通过在腾讯微博数据集上进行实验对比,验证了本文提出的方法与传统的推荐方法相比能取得更高的推荐平均准确度. 相似文献
6.
矩阵分解的推荐模型具有推荐精度高和易扩展等特点,已成为目前融合社交信息构建推荐系统的主要模型,但在分解过程中,用户偏好矩阵和物品特征矩阵初始赋值的随机性影响了推荐的性能,忽略了物品以及用户之间隐含的联系与区别。为此,提出一种基于社交信息的矩阵分解改进算法。将评分值分别与社交信息和物品的特征属性相结合,构建用户相似网络与物品相似网络,同时应用社区划分充分挖掘用户、物品之间的潜在关系,并按不同类型节点的近邻差异性,通过建立核心、非核心节点的偏好向量与特征向量得到矩阵分解初始矩阵。在公开数据集上的实验结果表明,该算法的推荐性能优于MF、SR2等同类型算法,运行迭代次数明显降低。 相似文献
7.
冷启动和数据稀疏性问题是推荐系统面临的两大难题。现有的大多数基于矩阵分解的推荐方法将用户孤立对待,忽略了用户之间的信任关系,导致推荐性能较低。提出一种融合信任关系和有用性评价的矩阵分解推荐方法。该方法在对评分矩阵进行概率分解的基础上,加入有用性评价和用户信任关系,采用交替最小二乘法训练模型参数。Epinions和Ciao数据集上的对比实验表明,所提方法有效提高了推荐系统的准确性和可靠性,尤其存在冷启动用户时,该方法的推荐精度明显优于传统的推荐方法。 相似文献
8.
针对目前用户偏好数据和社交关系数据十分稀疏的问题,以及用户可能更加喜欢朋友推荐的商品而不喜欢非朋友推荐的商品这样一个事实,提出了一种结合社交网络和用户间的兴趣偏好相似度的正则化矩阵分解推荐算法,首先针对社交关系数据稀疏问题,利用网络的全局和局部拓扑特性挖掘出用户间的信任和不信任关系矩阵,然后定义了一种改进的用户间的兴趣偏好相似度计算方法,最后在矩阵分解的过程中将信任矩阵、不信任矩阵以及兴趣相关性综合起来为用户作出推荐。实验表明该方法优于主要的正则化推荐方法,与基本的矩阵分解模型(SocialMF)、SoRec、TrustMF、CTRPMF、RecSSN算法相比,算法在均方根误差(RMSE)和平均绝对误差(MAE)上分别减小了1.1%~9.5%和2%~10.1%,取得了较好的推荐效果。 相似文献
9.
针对推荐精度不准确、数据稀疏、恶意推荐的问题,提出融合信任基于概率矩阵分解(PMF)的新推荐模型。首先,通过建立基于信任的协同过滤模型(CFMTS)将改进的信任机制融入到协同过滤推荐算法中。信任值通过全局信任及局部信任计算获得,其中局部信任利用了信任传播机制计算用户的直接信任值和间接信任值得到,全局信任采用信任有向图的方式计算得到。然后,将信任值与评分相似度融合以解决数据稀疏、恶意推荐的问题。同时,将CFMTS融入到PMF模型中以建立新的推荐模型——融合信任基于概率矩阵分解模型(MPMFFT),通过梯度下降算法对用户特征向量和项目特征向量进行计算以产生预测评分值,进一步提高推荐系统的精准度。通过实验将提出的MPMFFT与经典的PMF、社交信息的矩阵分解(SocialMF)、社交信息的推荐(SoRec)、加权社交信息的推荐(RSTE)等模型进行了结果的对比和分析,在公开的真实数据集Epinions上MPMFFT的平均绝对误差(MAE)和均方根误差(RMSE)比最优的RSTE模型分别降低2.9%和1.5%,同时在公开的真实数据集Ciao上MPMFFT的MAE和RMSE比最优的SocialMF模型分别降低1.1%和1.8%,结果证实了模型能在一定程度上解决数据稀疏、恶意推荐问题,有效提高推荐质量。 相似文献
10.
基于LBSN的兴趣点推荐存在用户签到矩阵稀疏、推荐精度不高、上下文信息利用不充分等问题,提出一种融合社交信任的矩阵分解算法TGMF(Trust-Geo?Matrix?Factorization)来缓解以上问题。利用BPR模型优化矩阵分解的过程,改进偏序关系的生成策略。把信任影响和相似度计算相结合,提高推荐精度。融合两种模型得到用户的最终偏好列表。把偏好列表中的top-[k]个兴趣点推荐给用户。实验结果表明,在真实数据集Gowalla和Foursquare上,TGMF算法在准确率和召回率两个指标上均优于传统的兴趣点推荐算法。 相似文献
11.
针对社交网络推荐系统中存在的数据稀疏、冷启动等问题,提出了一种结合特征传递和概率矩阵分解(TPMF)的社交网络混合型推荐算法。以概率矩阵因式分解(PMF)方法作为推荐框架,不仅考虑了用户信任网络,还结合推荐项目之间的关联关系、用户项目评分矩阵和自适应权重来权衡个人潜在特征和社交潜在特征对用户的影响程度。将社交网络中用户间的信任特征传递引入推荐系统中作为推荐的有效依据。实验结果表明,与基于用户的协同过滤(UBCF)、TidalTrust、PMF和SoRec算法相比,TPMF的平均绝对误差(MAE)直接相减后降低了4.1%到20.8%,均方根误差(RMSE)降低了3.3%到18.5%。在冷启动问题中,与上述四种算法相比,TPMF的平均绝对误差相减后降低了1.6%到14.7%,均方根误差降低了约1.2%到9.7%,能有效缓解冷启动问题,提高算法的鲁棒性。 相似文献
12.
现有的基于信任关系的推荐模型大多用于预测缺失的“用户-物品”评分,未考虑信任关系自身的多样性。基于此,研究了考虑多元信任关系的物品序列推荐的矩阵分解模型。首先,针对社交网络中目标用户可分别作为信任者和受信任者2种情形,提出相应的信任者相似度因子模型(truster factored similarity model,TrusterFSM)和受信任者相似度因子模型(trustee factored similarity model, TrusteeFSM);然后,通过融合两者获得最终的信任相似度因子模型(trust factored similarity model, TrustFSM),TrustFSM引入了物品偏置、用户偏置、物品相似度、用户相似度和社交相似度的影响。最后,基于真实数据集的实验结果表明,TrustFSM获得了最优的推荐效果,所提3种模型的性能优于现有模型(有/无引入信任者信息)。 相似文献
13.
微博作为一种实时的信息传播和分享的社交网络平台,对人们日常生活的影响越来越大.在微博中,用户可以通过关注关系,添加自己感兴趣的好友,扩大自己的交际圈.但如何推荐高质量的关注好友,一直是个性化服务的难点之一.针对此种情况,提出一种微博好友推荐算法,旨在为用户推荐高质量的关注用户.该算法是对基于Seeker-Source矩阵分解模型的一种改进算法.文中分析了微博用户的多种数据源信息,并给出了相应的特征提出方法,最后将这些特征引入到Seeker-Source矩阵分解模型中,通过对模型的优化求解,得到最佳的参数因子矩阵,从而完成好友推荐.在真实的微博数据集上的实验表明,本文所提出的算法取得了良好的效果. 相似文献
14.
研究表明在社会网络推荐中添加明确的社会信任明显提高了评分的预测精度,但现实生活中很难得到用户之间明确的信任评分。之前已有学者研究并提出了信任度量方法来计算和预测用户之间的相互作用及信任评分。提出了一种基于Hellinger距离的社会信任关系提取方法,通过描述二分网络中一侧节点的f散度来进行用户相似度计算。然后结合用户分组信息,将提取的隐式社会关系加入改进的概率矩阵分解中,提出一种新的基于用户组群和隐性社会关系的概率矩阵分解算法(CH-PMF)。实验结果表明,提出的模型与应用实际用户明确表示的信任分数推荐结果表现几乎相同,且在无法提取到明确信任数据时,CH-PMF有着比其他传统算法更好的推荐效果。 相似文献
15.
针对现有社会化推荐算法在信任分析方面的不足,研究了从社交辅助信息中充分挖掘用户信任关系的方法,进而提出一种基于多维信任计算和联合矩阵分解的社会化推荐算法。首先,从用户社交行为、社交圈特征获得用户的动态和静态两种局部信任度,再利用信任网络的结构特征提取全局信任度;然后,构造一种对增强关注矩阵和社交信任矩阵进行联合矩阵分解的社会化推荐算法,并采用随机梯度下降法对其求解。基于新浪微博数据集的实验结果表明,所提出的算法在推荐精度和Top-K推荐能力方面明显优于socailMF、LOCABAL、contextMF和TBSVD这几种代表性的社会化推荐算法。 相似文献
16.
推荐系统是用来解决当今时代信息过载的重要工具。随着在线社交网络的出现和普及,一些基于网络推荐算法研究的出现,已经引起研究者的广泛关注。信任是社会网络中的重要信息之一,通常用来改进基于社交网络的推荐系统,然而,大多数信任感知的推荐系统忽略了用户有不同行为偏好在不同的兴趣域;本文不仅考虑了用户间特定域信任网络,并且结合推荐项目之间特征属性信息,提出了一种新型社会化推荐算法(H-PMF)。实验表明,H-PMF算法在评分误差和推荐精度上都取得了更好的效果。 相似文献
17.
18.
随着位置社交网络(location-based social network, LBSN)的快速增长,兴趣点(point-of-interest, POI)推荐已经成为一种帮助人们发现有趣位置的重要方式.现有的研究工作主要是利用用户签到的历史数据及其情景信息(如地理信息、社交关系)来提高推荐质量,而忽视了利用兴趣点相关的评论信息.但是,现实中用户在LBSN中只对少数兴趣点进行签到,使得用户签到历史数据及其情景信息极其稀疏,这对兴趣点推荐来说是一个巨大的挑战.为此,提出了一种新的兴趣点推荐模型,称为GeoSoRev模型.该模型在已有的基于矩阵分解的经典推荐模型的基础上,融合关于兴趣点的评论信息、用户社交关联和地理信息这3个因素进行兴趣点推荐.基于2个来自Foursquare的真实数据集的实验结果表明,与其他主流的兴趣点推荐模型相比,GeoSoRev模型在准确率和召回率等多项评价指标上都取得了显著的提高. 相似文献
19.
矩阵分解运用于推荐系统受到越来越多的关注,改进算法也层出不穷,这些算法都面临预测精度不足,收敛速度过慢和不适用于大数据量的推荐系统等问题.针对上述问题,提出一种基于引力影响的矩阵分解推荐方法,物品影响力对推荐系统提高推荐精度具有重要的意义.基于物品流行度和物品质量的高低对用户评分的影响,通过引入物品对用户的引力,实现基于矩阵分解的引力推荐算法.实验表明:在用户没有任何历史行为的情况下也可以做出比较合理的推荐,迭代20次就能达到较好的收敛效果,且在推荐精度上有了明显的提高,并且该算法可适用于数据量大的推荐系统. 相似文献
20.
协同过滤方法广泛应用于推荐,但是数据稀疏成为模型提供高质量推荐的一大障碍.为了解决此问题,文中提出融合社交关系和语义信息的推荐算法,提高协同过滤方法的推荐性能,有机融合稀疏的用户行为记录、项目的社交信息和项目的语义信息.应用矩阵分解技术把行为矩阵和项目社交关系映射到一个低维的特征空间,提供项目社交关系信息分解的显式解释,分析关系信息对用户行为偏好产生的影响.同时,使用社会化因子正则的级联去噪自编码器模型学习项目语义特征,改进传统深度学习模型.在真实腾讯微博和Twitter数据集上的实验表明,文中方法有效提高召回率、准确率和推荐效率. 相似文献