首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
研究了Zr0.8Ti0.2(Ni0.6Mn0.2V0.2Cr0.05)x(x=1.8~2.4)贮氢合金中化学计量x对晶体结构和电化学性能的影响.结果表明随着x值的增大,合金中C14相含量逐渐减少,C15相含量逐渐增加,C14和C15相的晶格常数均线性减小;随着x值的增大,合金电极的活化性能提高,高倍率放电性能和放电容量均先升高,至x=2.2时达到最大值(最大放电容量为370 mAh/g);超化学计量合金电极的循环寿命随x值的增大而降低,但当x<2.2时,经充放电循环500次以后容量保持率仍在80%左右.当化学计量值x等于2.2时,合金电极的综合电化学性能最好.  相似文献   

2.
研究了Zr0.8Ti0.2(Ni0.6Mn0.2V0.2Cr0.05)x(x=1.8~2.4)贮氢合金中化学计量x对晶体结构和电化学性能的影响。结果表明:随着x值的增大,合金中C14相含量逐渐减少,C15相含量逐渐增加,C14和C15相的晶格常数均线性减小;随着x值的增大,合金电极的活化性能提高,高倍率放电性能和放电容量均先升高,至x=2.2时达到最大值(最大放电容量为370mAh/g);超化学计量合金电极的循环寿命随x值的增大而降低,但当x<2.2时,经充放电循环500次以后容量保持率仍在80%左右。当化学计量值x等于2.2时,合金电极的综合电化学性能最好。  相似文献   

3.
采用感应熔炼方法制备了A2B7型La0.75Mg0.25Ni3.5-xAlx(x=0,0.02,0.06 0.1,0.3)四元贮氢合金,系统研究了Al元素部分替代Ni对A2B7型La0.75Mg0.25Ni3.5合金相结构及电化学性能的影响。X射线衍射(XRD)分析表明:La0.75Mg0.25Ni3.5由单一La2Ni7相组成:Al元素加入后,开始出现CaCu5型LaNi5相,当x=0.3时,LaNis相成为合金的主相。Rietveld分析表明:随着Al含量的增加,LaNi5相逐渐增多,Al的加入利于CaCu5型LaNi5相的形成。电化学测试表明:Al替代Ni对A2B7型合金La0.75Mg0.25Ni3.5电极活化性能影响不大:而最大放电容量随Al在La0.75Mg0.25Ni3.5-xAlx,合金中替代量的增加而减小。当放电电流密度为1600mA/g时,合金的倍率放电性能由68.8%(x=0)增加到81.16%(x=0.1)然后减小到65.67%(x=0.3)。此外,La0.75Mg0.25Ni3.5-xAlx合金电极循环稳定性先增加而后下降。x=0.06时合金电极容量保持率最大(S100=85.21.%)。  相似文献   

4.
为了探索化学计量比B/A(A和B分别为电极合金A侧和B侧元素的总和)以及Co替代Ni对ABx(x=2.5~3.5)型电极合金微观结构及电化学性能的影响,制备了电极合金La0.75Mg0.25Ni2.5Mx(M=Ni,Co;x=0,0.2,0.4,0.6,0.8,1.0)。系统地分析测试了合金的微观结构及电化学性能。结果表明,合金的微观结构与电化学性能与化学计量比B/A(相当于M含量x)密切相关。合金均具有多相结构,包括LaNi2,(La,Mg)Ni3和LaNi5相。随化学计量比B/A的增加,合金的主相由LaNi2转为(La,Mg)Ni3+LaNi5相,并且合金的电化学性能,包括放电容量、高倍率放电能力(HRD)、放电电压特性等均显著改善。  相似文献   

5.
用放电等离子烧结技术(SPS)制备La0.7Mg0.3Ni2.5Cox(x=O.1,0.2,0.3,0.4,0.5)贮氢合金。采用X射线衍射、三电极测试体系和交流阻抗法研究了合金的相结构、贮氢性能和电化学性能。结果表明:合金为多相结构,主相为(La,Mg)2Ni,和(La.Mg)Ni3相;该系列贮氢合金的贮氢容量随x值的增大先增后减,在x=0.4时贮氢容量达1.37%。最大放电容量为365.4mAh/g。合金的活化性能好(活化次数均为1次),随着x值的增加,贮氢合金的放氢平台压力升高,合金电极表面电荷转移速率增大。  相似文献   

6.
研究了超化学计量比对钛基贮氢合金相结构及电化学性能的影响。XRD及EDS分析表明,超化学计量比贮氢合金(Ti0.8Zr0.2)(V0.533Mn0.107Cr0.16Ni0.2)x(x=2,3,4,5,6)均主要由六方结构的C14型Laves相和体心立方结构的钒基固溶体相构成。随着x值的增大,两相的晶胞参数及晶胞体积均减小。电化学性能测试表明,当x的值在2-5范围内时,随着x值的增大,合金的最大放电容量、放电电位、高倍率放电性能(HRD)、循环稳定性、交换电流密度I0以及极限电流密度IL均提高。但继续增大x值后,除放电电位、高倍率放电性能和循环稳定性继续有所提高外,最大放电容量、交换电流密度I0以及极限电流密度IL均减小。此外,随着化学计量比的增大,合金电极的活化渐趋困难。  相似文献   

7.
研究了四元混合稀土(LaxCe1-x)0.9(PrNd)0.1(Ni3.55Co0.75Mn0.4Al0.3)(x=0.4~0.9)贮氢合金中La,Ce的不同含量和比例对合金结构和电化学性能的影响。结果表明:合金晶胞的α轴和晶胞体积随La含量x的增加而增大,而c轴则在小幅度内波动;合金电极的最大放电容量随x的增加而增大,并在x=0.90时达到最大值(328.9mAh/g),但平均每循环容量衰减率提高,充放电循环稳定性下降。  相似文献   

8.
对LaMg_(0.25)Ni_(4.0-x)Co_(0.75)Al_x(x=0~0.3)系列合金进行了快速凝固处理(15m/s),系统研究了该条件下Al部分替代Ni对合金相结构和电化学性能的影响。XRD分析结果表明,合金主要由La4MgNi19相(A5B19型)和LaNi5相(CaCu5型)相组成,两相的晶胞体积(V)和LaNi5相的相丰度均随x的增加而增大。电化学性能测试表明,x的增加,会使合金的活化性能、最大放电容量以及高倍率放电性能(HRD)下降,但循环稳定性有明显改善,如100次循环后的容量保持率(S100)从x=0的59.07%提高到了x=0.3合金的85.99%。研究认为,合金中较高吸氢相(A5B19型)随x的增加而减少是导致合金电极最大放电容量下降的主要原因,而循环寿命的改善则是由于Al含量的增加降低了合金颗粒的吸氢体积膨胀率,同时减小了两种吸氢主相在吸放氢过程中产生的内应力,从而降低了合金电极的粉化程度所致。  相似文献   

9.
研究了LaNi5-xF3x(x=1.0,1.2,1.4,1.6,1.8)合金中Fe部分代替Ni对LaNi5型电极合金相结构及电化学性能的影响.结果表明:当x=1.0时,合金由LaNi5和La2Ni7相组成;当x=1.2时,开始出现(Fe,Ni)相;当x=1.6时,还开始出现La2Ni3相.随x增大LdNi5相逐渐减少、La2Ni7和(Fe,Ni)相逐渐增多.随Fe含量的增大,电极合金放电容量减小,扩散系数减小,交换电流密度呈先减小后增大的趋势,当x=1.4时,电极合金的交换电流密度达到最小值.Fe含量对合金电极高倍率放电性能HRD值的影响与对合金电极交换电流密度的影响趋势一致,这表明电极合金表面的电化学反应对合金的动力学性能影响更大.  相似文献   

10.
研究了化学配比x对贮氢合金Ml(Ni0 .71 Co0 .1 5Al0 .0 6Mn0 .0 8) x(4.6≤x≤ 5.2 )的结构、组织、电化学性能和 p c T特性的影响。结果表明 ,随着x增大非化学计量比合金点阵常数a值减小 ,c值增大 ,单胞体积减小 ,当x =5.2时c/a达到最大值。x =5.0的化学计量比合金具有最小的点阵常数和单胞体积。放电容量、充放电循环稳定性和 p c T曲线平台压均随着x增大而提高 ,当x =5.2时达到最大放电容量和最佳循环稳定性。  相似文献   

11.
The crystal structure,the phase composition and the electrochemical characteristics of Zr0.9 Ti0.1(Ni1.1Mn0.7V0.2)x(x=0.90,0.95,1.00,1.05) alloys were investigated by means of XRD,SEM,EDS and electrochemical measurements.It was shown that all alloys are multiphase with C15 Laves phase as a main phase along with C14 phase and some secondary phases.And the amounts of the C14 phase and secondary phases in the four alloys increases with decreasing x.The results indicated that the various stoichiometric ratios have great effects on the electrochemical characteristics such as the maximum discharge capacity,discharge rate capability and self-discharge properties etc.for Zr0.9Ti0.1(Ni1.1Mn0.7V0.2)x(x=0.90,0.95,1.00,1.05)alloys.The hyper-stoichiometric Zr0.9Ti0.1(Ni1.1Mn0.7V0.20)1.05 exhibits the maximum discharge capacity of 332mAh·g^-1.The C14 phase and secondary phases seems to mprove discharge rate capability of the alloys.  相似文献   

12.
The crystal structure, the phase composition and the electrochemical characteristics of Zr0.9Ti0.1(Ni1.1Mn0.7V0.2)x (x=0.90, 0.95, 1.00, 1.05) alloys were investigated by means of XRD, SEM, EDS and electrochemical measurements. It was shown that all alloys are multiphase with C15 Laves phase as a main phase along with C14 phase and some secondary phases. And the amounts of the C14 phase and secondary phases in the four alloys increases with decreasing x. The results indicated that the various stoichiometric ratios have great effects on the electrochemical characteristics such as the maximum discharge capacity, discharge rate capability and self-discharge properties etc. for Zr0.9Ti0.1(Ni1.1Mn0.7 V0.2)X (x=0.90, 0.95, 1.00, 1.05) alloys. The hyper-stoichiometric Zr0.9 Ti0.1(N1.1Mn0.7 V0.20)1.05 exhibits the maximum discharge capacity of 332mAh-g-1. The C14 phase and secondary phases seems to improve discharge rate capability of the alloys.  相似文献   

13.
利用炭热还原法合成了橄榄石型LiFe1-xNixPO4/C (x=0.0,0.1,0.3,0.5) 正极材料,并系统研究了Ni2+替代对材料电化学性能的影响。充放电循环、循环伏安和交流阻抗测试,结果表明Ni2+替代部分Fe2+可以显著改善LiFePO4材料的电化学性能。在0.2 C (1 C=170.0 mA·g-1)电流密度下,LiFe0.9Ni0.1PO4/C的放电比容量达到160 mAh·g-1。LiFe1-xNixPO4/C电化学性能的改善归因于材料电导率的提高和电荷传输电阻的降低。利用第一性原理对LiFe1-xNixPO4/C的电子结构进行了研究,结果表明Ni2+的铁位替代能够提高体系的电子电导性。LiFe0.875Ni0.125PO4的结构最稳定,带隙最小,导电性能最好  相似文献   

14.
La0.7Mg0.3Ni3.4-xCo0.6Mnx(x=0.0~0.5)合金主要由(La,Mg)Ni3相和LaNi5相构成,各相的晶胞参数和晶胞体积均随Mn含量的增加而增大。随Mn含量的增加,合金的放氢平衡压力从0.128MPa(x=0.0)下降到0.067MPa(x=0.5),导致最大吸氢量从x=0.0时的1.19%(质量分数,下同)逐渐增加到x=0.4时的1.38%。合金的最大放电容量随Mn含量的增加首先从330.4mAh/g(x=0.0)增加到360.6mAh/g(x=0.4),然后减小到346.9mAh/g(x=0.5)。随Mn替代量的增加,合金电极的高倍率放电能力先改善后降低,合金电极的表面反应阻抗先降低后升高,而氢的扩散系数先增加后减小,说明合金的电化学动力学性能首先提高然后降低。  相似文献   

15.
为了改善Ti基贮氢合金的电化学性能,采用XRD,SEM及EDS分析了Ti0.3Zr0.225V0.25Mn0.3-xNi0.45+x(x=,0.05,0.10,0.15,0.20,0.25)贮氢合金的相结构及相成分,并研究了合金的电化学性能。结果表明,合金均由六方结构的C14型Laves主相和立方结构的C15型Laves第二相构成;随着Ni替代量x的增大,合金的活化性能降低,而循环稳定性得到一定程度的改善。当Ni替代量x=0.05时,合金的放电容量达到最大,为426mAh/g,显示出很大的应用潜力.  相似文献   

16.
系统地研究了La0.65Mg0.35Nix(x=3.0~3.5)储氢合金电极的自放电性能。结果表明,随着Ni含量的增加,合金电极最大放电容量从350.6mAh·g-1(x=3.0)增加到351.2mAh·g-1(x=3.1),然后减小到244.1mAh·g-1(x=3.5)。72h自放电的容量保持率从77.7%(x=3.0)增加到79.5%(x=3.1),然后又降低到63.5%(x=3.5)。说明适中的Ni含量有利于降低合金电极的自放电率。通过测量合金电极的P-C-T曲线和合金的腐蚀曲线分析了合金电极自放电性能的变化规律。  相似文献   

17.
采用X射线衍射、电子探针和电化学测试研究了La0.67Mg0.33Ni3.0-xAlx(x=0.0-0.35)合金的相结构和电化学性能。XRD结果和EPMA观察表明:La0.67Mg0.33Ni3.0合金由LaNi3相和La2Ni7相组成。然而La0.67Mg0.33Ni3.0-xAlx(x=0.1,0.2,0.35)合金不含LaNi3相。研究结果表明Al替代Ni改变了La0.67Mg0.33Ni3.0合金的相结构,Al替代Ni不利于La0.67Mg0.33Ni3.0合金中LaNi3相的形成。此外,随Al含量的增加,La0.67Mg0.33Ni3.0-xAlx(x=0.1,0.2,0.35)合金的相结构也发生了变化。WDS分析表明:随La0.67Mg0.33Ni3.0-xAlx合金中X的增加,Al在LaNis相中的含量增加,但Al在LaNi2相的含量很少并且几乎不随X变化。电化学性能测试表明:Al替代Ni提高了La0.67Mg0.33Ni3.0合金电极的循环稳定性。但La0.67Mg0.33Ni3.0-xAlx合金电极的放电容量却随Al含量的增加而明显降低。  相似文献   

18.
为了改善 La-Mg-Ni 系 A2B7型电极合金的电化学循环稳定性,用 Pr 部分替代合金中的 La,并用熔体快淬工艺制备了La0.75-xPrxMg0.25Ni3.2Co0.2Al0.1(x = 0, 0.1, 0.2, 0.3, 0.4)电极合金。用 XRD、SEM、TEM 分析了铸态及快淬态合金的微观结构。结果表明,铸态及快淬态合金均具有多相结构,包括 2 个主相(La,Mg)Ni3及 LaNi5和 1 个残余相 LaNi2。熔体快淬导致 LaNi5相增加而(La,Mg)Ni3相减少。电化学测试结果表明,熔体快淬显著地提高合金的电化学循环稳定性。当淬速从 0 m/s (铸态被定义为淬速 0 m/s)增加到 20 m/s 时,x=0 合金 100 次充放循环后的容量保持率从 65.32%增加到 73.97%,x=0.4 合金的容量保持率从 79.36%增加到 93.08%。  相似文献   

19.
研究了Mn替代Ni对La2Mg0.9Al0.1Ni7.5-xCo1.5Mnx(x=0,0.3,0.6,0.9)贮氢合金相结构和电化学性能的影响。XRDRietveld全谱拟合分析表明:Mn替代改变了合金的物相组成和物相的丰度。LaNi3相消失,αLa2Ni7相丰度的变化表现为先增加(x=0,0.3)后减少(x=0.6,0.9),LaMgNi4相和La5Ni19相的丰度则随合金中Mn含量x的增加而增加。Mn替代Ni降低了合金的贮氢容量、最大电化学放电容量和活化性能,La2Mg0.9Al0.1Ni7.2Co1.5Mn0.3合金电极表现出最好的电化学循环稳定性,合金的高倍率放电性能随Mn含量的增加降低,这归因于交换电流密度(I0)和氢扩散系数(D)的降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号