首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cryptosporidium parvum is an important diarrhea-causing protozoan parasite of immunocompetent and immunocompromised hosts. Immunoglobulin A (IgA) has been implicated in resistance to mucosal infections with bacteria, viruses, and parasites, but little is known about the role of IgA in the control of C. parvum infection. We assessed the role of IgA during C. parvum infection in neonatal mice. IgA-secreting hybridomas were developed by using Peyer's patch lymphocytes from BALB/c mice which had been orally inoculated with viable C. parvum oocysts. Six monoclonal antibodies (MAbs) were selected for further study based on indirect immunofluorescence assay reactivity with sporozoite and merozoite pellicles and the antigen (Ag) deposited on glass substrate by gliding sporozoites. Each MAb was secreted in dimeric form and recognized a 23-kDa sporozoite Ag in Western immunoblots. The Ag recognized comigrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with P23, a previously defined neutralization-sensitive zoite pellicle Ag. MAbs were evaluated for prophylactic or therapeutic efficacy against C. parvum, singly and in combinations, in neonatal BALB/c mice. A combination of two MAbs given prophylactically prior to and 12 h following oocyst challenge reduced the number of intestinal parasites scored histologically by 21.1% compared to the numbers in mice given an isotype-matched control MAb (P < 0.01). Individual MAbs given therapeutically in nine doses over a 96-h period following oocyst challenge increased efficacy against C. parvum infection. Four MAbs given therapeutically each reduced intestinal infection 34.4 to 42.2% compared to isotype-matched control MAb-treated mice (P < 0.05). One MAb reduced infection 63.3 and 72. 7% in replicate experiments compared to isotype-matched control MAb-treated mice (P < 0.0001). We conclude that IgA MAbs directed to neutralization-sensitive P23 epitopes may have utility in passive immunization against murine C. parvum infection.  相似文献   

2.
Immunomodulatory activities of oat beta-glucan in vitro and in vivo   总被引:1,自引:0,他引:1  
Previous studies have shown that beta-glucans extracted from yeast or fungi potentiate immune responses. In the present study, the immunomodulatory activities of beta-(1-->3,1-->4)-glucan, derived from oats, were investigated. The ability of oat beta-glucan (ObetaG) to stimulate IL-1 and TNF-alpha release from murine peritoneal macrophages and the murine macrophage cell line P338D1, was assessed. In vitro stimulation of macrophages with ObetaG resulted in the production of IL-1 in a dose and time-dependent manner, whereas only small amounts of TNF-alpha could be detected in the culture supernatants. ObetaG also induced the production of IL-2, IFN-gamma and IL-4 secretion in a dose-dependent manner in cultured spleen cells. The intraperitoneal administration of ObetaG in mice resulted in the accumulation of leucocytes, predominantly macrophages, in the peritoneal cavity. Furthermore, ObetaG was tested for its ability to enhance non-specific resistance to a bacterial challenge in mice. Survival of mice challenged with Staphylococcus aureus was enhanced by a single intraperitoneal administration of 500 microg of ObetaG 3 days prior to bacterial challenge. In conclusion, these studies demonstrated that ObetaG possesses immunomodulatory activities capable of stimulating immune functions both in vitro and in vivo.  相似文献   

3.
Resistance of adult C57BL/6 mice to severe Cryptosporidium parvum infection is dependent on CD4+alpha beta+ TCR lymphocytes. In this study, we demonstrated that treatment with anti-IFN-gamma mAb extended oocyst excretion 18 days longer, and anti-IL-4 mAb extended oocyst excretion at least 11 days longer than isotype control mAb treatment. Analysis of the specific activity of anti-IFN-gamma mAb present in treated mouse sera suggested that IFN-gamma may have a limited role in the resolution phase of infection. Changes were also documented in numbers of CD4+alpha beta+IFN-gamma+ and CD4+alpha beta+IL-4+ lymphocytes in Peyer's patches and intraepithelium of adult C57BL/6 mice during resolution of C. parvum infection. Resistance to initial severe infection was associated with CD4+alpha beta+IFN-gamma+ lymphocytes, and eventual resolution of infection was associated with CD4+alpha beta+IL-4+ lymphocytes. Analysis of cytokine expression following in vitro stimulation with C. parvum Ags during resolution of infection demonstrated consistent increases in CD4+alpha beta+IL-4+ lymphocytes, but not CD4+alpha beta+IFN-gamma+ lymphocytes. The relevance of CD4+alpha beta+IL-4+ lymphocytes in protection against C. parvum was then evaluated in C57BL/6 IL-4 gene knockout mice (IL-4(-/-)). Adult IL-4(-/-) mice excreted oocysts in feces approximately 23 days longer than IL-4(+/+) mice. Further, anti-IFN-gamma mAb treatment increased the severity and the duration of infection in IL-4(-/-) mice compared with those in IL-4(+/+) mice. Together, the data demonstrated that IFN-gamma was important in the control of severity of infection, and either IFN-gamma or IL-4 accelerated termination of infection. However, neither IL-4 nor IFN-gamma was required for the final clearance of infection from the intestinal tract of adult mice.  相似文献   

4.
The efficacies of dicationic carbazole compounds, nitazoxanide (NTZ), and paromomycin were evaluated against the AUCp1 isolate of Cryptosporidium parvum by using a neonatal mouse model. Compounds were solubilized or suspended in deionized water and administered orally by gavage to neonatal mice at a constant dose rate on days 0 to 5 (treatment started on day 0). Dose rates varied for individual carbazole compounds but ranged from 0.65 to 20 mg/kg of body weight. NTZ was tested at 100 and 150 mg/kg, and paromomycin was tested at 50 mg/kg. Efficacies were determined by comparing numbers of oocysts present in treated versus control mice at necropsy examination on day 6. Demonstrable efficacy was observed for several carbazole compounds, based on significant reductions in the numbers of oocysts recovered from treated mice versus control mice. Compounds 1, 7, and 10 (19.0 mg/kg) reduced oocyst passage in treated mice to less than 5% of that in control mice. Treatment with compounds 6, 8, and 9 (17.0 mg/kg) resulted in reductions of oocyst output to less than 10% of that in controls. Although they were not comparable in efficacy to compounds 1, 6, 7, 8, 9, and 10, treatment with other carbazole compounds resulted in statistically significant reductions in oocyst output in treated versus control mice. Compound 1 retained efficacy resulted in reduction of oocyst output to approximately 6% of that in controls when the dose was reduced to 5 mg/kg. Further reductions in the dose rate resulted in considerable reductions in anticryposporidial activity. Likewise, the efficacies of compounds 9 and 10 were reduced substantially when the doses were lowered to one-half the screening dose. Paromomycin yielded excellent activity (reduction of oocyst output to <2% of that in controls) at a dose of 50 mg/kg. NTZ yielded moderate efficacy as powder and injectable formulations administered at 100 mg/kg orally (reduction of oocyst output to 42 and 26% of that in controls, respectively). Oral administration of the injectable formulation of NTZ at a dose of 150 mg/kg resulted in improved efficacy (oocyst output, <5% of that in controls).  相似文献   

5.
The immune responses generated after infection with Eimeria spp. are complex, include both cellular and humoral components, and lead to protection against re-infection. To facilitate the rational development of the next generation of anticoccidial vaccines it is important that the nature of the immunoprotective response against infection with Eimeria spp. is determined. In this brief report we discuss results that were obtained using a combination of genetic and cellular approaches to dissect the essential immune effector components that operate against infection with Eimeria vermiformis. Mice rendered deficient of immune function by targeted gene disruption at a variety of immune loci represent an integral component of our studies and include those with targeted gene disruption at loci that encode the B- and T-cell receptors (BCR, TCR), antigen presentation molecules and immune-effector molecules. Our studies demonstrated that TCR-alpha-beta + T cells are essential for immunoprotection during both primary and secondary infection. Moreover, during primary infection the major effector cell type is a population of major histocompatibility complex class II-restricted, interferon-gamma-producing TCR-alpha-beta T cell consistent with a T helper 1 phenotype. In addition, there is a supplementary role for another class of cells (presumably T cells) that are restricted to either non-classical antigen presentation molecules or classical major histocompatibilty complex class I loaded via an atypical pathway. Mice with a deficiency in interleukin-6 were slightly more susceptible to primary infection than intact animals, consistent with the reported effects of interleukin-6 upon the generation of T helper 1-type responses in vivo. In terms of the host response to re-infection, TCR-alpha-beta T cells were essential for immunity, but the requirement for specific cell subsets and effector mechanisms was much less stringent. Mice deficient in gamma-delta T cells, classical major histocompatibility complex class I, non-classical antigen presentation pathways, the cytokines interferon-gamma, interleukin-4, interleukin-6 and the cytolytic effector molecules perforin or FasL were completely immune to secondary infection. Moreover, major histocompatibility complex class II-deficient I-A-beta-/- mice were capable of mounting a substantial response to secondary infection, manifest by a 95% reduction in oocyst output compared with primary infection. These data have important consequences for the development of immune intervention strategies and indicate that vaccine development may be targeted toward the generation of a wider range of effector mechanisms than those that operate during primary infection.  相似文献   

6.
Most malariologists believe that optimal malaria vaccines will induce protective immune responses against different stages of the parasite's life cycle. A multiple antigen peptide (MAP) vaccine based on the Plasmodium yoelii circumsporozoite protein (PyCSP) protects mice against sporozoite challenge by inducing antibodies that prevent sporozoites from invading hepatocytes. A purified recombinant protein vaccine based on the P. yoelii merozoite surface protein-1 (PyMSP-1) protects mice against challenge with infected erythrocytes, presumably by inducing antibodies against the erythrocytic stage of the parasite. We now report studies designed to determine if the PyMSP-1 vaccine protects against challenge with sporozoites, the stage encountered in the field, and if immunization with a combination of the PyCSP and PyMSP-1 vaccines provides additive or synergistic protection against sporozoite challenge. In two experiments, using TiterMax or Ribi R-700 as adjuvant, 3 of 19 mice immunized with the PyMSP-1 vaccine were completely protected against sporozoite challenge. The remaining mice had significantly delayed onset and lower levels of peak parasitemia than did control mice (11.1 +/- 2.8% vs. 36.7 +/- 1.6% in experiment #2, P < 0.01). Immunization with the combination vaccine reduced by approximately 50% the level of antibodies induced to PyCSP and PyMSP-1, as compared to that induced by the individual components. However, in two experiments, there was evidence of additive protection. Six of 19 (31.6%) immunized with the PyCSP vaccine, 3 of 19 (15.8%) immunized with the PyMSP-1 vaccine, and 10 of 19 (52.6%) immunized with the combination were completely protected against sporozoit challenge. This modest increase in protection in the combination group may be a reflection of additive anti-PyCSP and anti-PyMSP-1 immunity, since mice in the combination group had diminished levels of antibodies to each components. These studies indicate that considerable work may be required to optimize the construction, delivery, and assessment of multi-stage malaria vaccines.  相似文献   

7.
Immunization of mice with DNA vaccines encoding the full-length form and C and N termini of Plasmodium yoelii merozoite surface protein 1 provided partial protection against sporozoite challenge and resulted in boosting of antibody titers after challenge. In C57BL/6 mice, two DNA vaccines provided protection comparable to that of recombinant protein consisting of the C terminus in Freund's adjuvant.  相似文献   

8.
The chicken monoclonal antibody (mAb) 6D12-G10, raised against Eimeria acervulina sporozoites, has previously been shown to recognize the conoid of E. acervulina sporozoites and inhibit sporozoite invasion of lymphocytes in vitro. In indirect immunofluorescent assay, the mAb 6D12-G10 also reacted with merozoites from E. acervulina and identified a 21-kDa merozoite protein on western blots. By confocal laser scanning microscopy, the conoid of sporozoites from 6 different avian Eimeria species (E. brunetti, E. maxima, E. mitis, E. necatrix, E. praecox, and E. tenella) were reactive with 6D12-G10 mAb. Furthermore, the 6D12-G10 mAb also showed cross-reactivity with motile stages of 2 closely related apicomplexans, Neospora, and Toxoplasma. These results indicate that the mAb 6D12-G10 identifies a conserved epitope on the conoid that is important in host cell invasion by the apicomplexan parasites.  相似文献   

9.
The oocyst wall of Eimeria spp. consists of a 10-nm-thick outer lipid layer and a 90-mm-thick inner layer of glycoprotein which has been described previously to be composed of a single major protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions and (125)I labelling of a oocyst wall fragments and of delipidated intact oocysts revealed a molecule of approximately 12 kDa as the major protein component of the oocyst wall of Eimeria tenella. An immunoglobulin M monoclonal antibody (c11B9F3) was produced against this 12-kDa oocyst wall protein sliced from a preparative SDS-polyacrylamide gel. Its reactivity by immunofluorescence against oocyst wall fragments and sporozoites or by immunoperoxidase assays of infected tissue sections was stage restricted to gametocytes and oocysts but pan-specific against all face of the oocyst wall. In chicks passively immunized with C11B9F3, oocyst output was significantly (P<0.01) reduced by 42 to 54% after homologous E. tenella infection and by 35% after heterologous Eimeria maxima infection compared with that of control groups. The results demonstrate the presence of a highly conserved, low-molecular-weight antigen on the oocyst wall and the gametocytes of Eimeria spp. which is a candidate for inclusion in a pan-specific, transmission-blocking vaccine against avian coccidiosis.  相似文献   

10.
The malaria sporozoite vaccine candidate RTS,S, formulated with an oil-in-water emulsion plus the immunostimulants monophosphoryl lipid A and the saponin derivative QS21 (vaccine 3), recently showed superior efficacy over two other experimental formulations. Immunized volunteers were followed to determine the duration of protective immune responses. Antibody levels decreased to between one-third and one-half of peak values 6 months after the last dose of vaccine. T cell proliferation and interferon-gamma production in vitro were observed in response to RTS,S or hepatitis B surface antigen. Seven previously protected volunteers received sporozoite challenge, and 2 remained protected (1/1 for vaccine 1, 0/1 for vaccine 2, and 1/5 for vaccine 3). The prepatent period was 10.8 days for the control group and 13.2 days for the vaccinees (P < .01). Immune responses did not correlate with protection. Further optimization in vaccine composition and/or immunization schedule will be required to induce longer-lasting protective immunity.  相似文献   

11.
The present study showed that parasites influence both the responses of uninfected females to males and the responses of female hosts to infected males. In female laboratory mice one of the consequences of exposure to the olfactory cues associated with an infected male was a reduction of the reactivity to a thermal surface, i.e. pain inhibition or analgaesia. Uninfected oestrous and non-oestrous female mice displayed marked analgaesic responses after exposure to the odours of males infected with either the enteric single-host nematode parasite, Heligmosomoides polygyrus, or the protozoan parasite, Eimeria vermiformis. The uninfected oestrous females distinguished between infected and physically stressed males, displaying a greater analgaesic response to the odours of infected males. These analgaesic responses and their anxiety/ fearfulness-associated behavioural correlates could elicit either a reduced interest in, or avoidance of, parasitized males by females. Oestrous female mice infected with H. polygyrus displayed a reduced analgaesic response to the odours of the infected males and differentially responded to the odours of males infected with either the same (H. polygyrus) or a different parasite (E. vermiformis). An exposure time of 1 min elicited minimal responses to the odours of males infected with the same parasite, H. polygyrus, and an attenuated, though significant, non-opioid peptide-mediated analgaesic response to males infected with E. vermiformis. An exposure time of 30 min elicited similar markedly reduced endogenous opioid peptide-mediated analgaesic responses to the odours of both of the categories of infected males. The responses to the odours of a stressed male were, however, unaffected by the parasitic infection. The reduced analgaesic responses of the parasitized females to the odours of infected males may involve either enhanced odour familiarity and responses to group odour templates and/or neuromodulatory shifts resulting in reduced fearfulness and potentially greater interest in the infected males.  相似文献   

12.
Loss of T lymphocyte proliferation and the emergence of a host response that is dominated by a Th2-type profile are well-established features of human filariasis. We have previously reported that adherent peritoneal exudate cells (PEC) from mice transplanted with adult Brugia malayi parasites suppress the proliferation of lymphocytes without blocking Ag-cytokine production in vitro. We now show that infection of mice with the infective larval (L3) stage of B. malayi generates a similar population of PEC. Suppressive cells are generated within 7 days of infection and mediate their effects through a nitric oxide-independent pathway. Both L3 and adult infection elicit high levels of host IL-4 whereas the microfilarial stage of the parasite induces IFN-gamma production and does not generate a similar form of suppression. Production of host IL-4 was necessary to allow the generation of suppressive PEC, given that IL-4-deficient mice implanted with adult parasites failed to induce proliferative block. However, IL-10-deficient mice implanted with adult parasites resulted in T cell suppression, indicating that IL-10 is not essential for the induction of hyporesponsiveness. Neither IL-4 nor IL-10 were directly responsible for ablating cellular proliferation in vitro, as the addition of neutralizing Ab to either cytokine did not reverse the proliferative block. Thus, IL-4 produced in vivo in response to filarial L3 and adult parasites is essential for the induction of proliferative suppression but is not itself the suppressive factor.  相似文献   

13.
Legionella pneumophila is a bacterial parasite of many species of freshwater protozoa and occasionally an intracellular pathogen of humans. While protozoa are known to play a key role in the persistence of L. pneumophila in the environment, there has been limited research addressing the potential role of L. pneumophila-infected protozoa in the pathogenesis of human infection. In this report, the potential role of an L. pneumophila-infected amoeba as an infectious particle in replicative L. pneumophila lung infection was investigated in vivo with the amoeba Hartmannella vermiformis, a natural reservoir of L. pneumophila in the environment. L. pneumophila-infected H. vermiformis organisms were prepared by coculture of the amoebae and virulent L. pneumophila cells in vitro. A/J mice, which are susceptible to replicative L. pneumophila lung infection, were subsequently inoculated intratracheally with L. pneumophila-infected H. vermiformis organisms (10(6) amoebae containing 10(5) bacteria), and intrapulmonary growth of the bacteria was assessed. A/J mice inoculated intratracheally with L. pneumophila-infected H. vermiformis organisms developed replicative L. pneumophila lung infections. Furthermore, L. pneumophila-infected H. vermiformis organisms were more pathogenic than an equivalent number of bacteria or a coinoculum of L. pneumophila cells and uninfected amoebae. These results demonstrate that L. pneumophila-infected amoebae are infectious particles in replicative L. pneumophila infections in vivo and support the hypothesis that inhaled protozoa may serve as cofactors in the pathogenesis of pulmonary disease induced by inhaled respiratory pathogens.  相似文献   

14.
The potential role of inhaled protozoa as a niche for intrapulmonary replication of Legionella pneumophila was investigated in vivo with mutant strains of L. pneumophila which have reduced virulence for the amoeba Hartmannella vermiformis. L. pneumophila AA488 and AA502 were derived from wild-type strain AA100 after transposon mutagenesis. These mutants have reduced virulence for H. vermiformis but are fully virulent for mononuclear phagocytic cells. A/J mice, which are susceptible to replicative L. pneumophila lung infections, were inoculated intratracheally with L. pneumophila AA100, AA488, or AA502 (10[6] bacteria per mouse) or were coinoculated with one of the L. pneumophila strains (10[6] bacteria per mouse) and uninfected H. vermiformis (10[6] amoebae per mouse). The effect of coinoculation with H. vermiformis on intrapulmonary growth of each L. pneumophila strain was subsequently assessed. In agreement with our previous studies, coinoculation with H. vermiformis significantly enhanced intrapulmonary growth of the parent L. pneumophila strain (AA100). In contrast, intrapulmonary growth of L. pneumophila AA488 or AA502 was not significantly enhanced by coinoculation of mice with H. vermiformis. These studies demonstrate that L. pneumophila virulence for amoebae is required for maximal intrapulmonary growth of the bacteria in mice coinoculated with H. vermiformis and support the hypothesis that inhaled amoebae may potentiate intrapulmonary growth of L. pneumophila by providing a niche for bacterial replication.  相似文献   

15.
Although most strategies of vaccination require immunopotentiation to induce efficient immune responses, the development of new adjuvants for human vaccines is highly limited by safety problems. In order to overcome this problem, we developed a new vaccine formulation based on the covalent linkage of protein or peptide to synthetic microspheres. In previous experiments performed in mice, we demonstrated that these particulate antigens induce strong antigen-specific CD4+ T cell proliferative responses in the absence of adjuvant. In the present study, we analyzed the immunogenicity in primate Saimiri sciureus monkeys of two different proteins linked to synthetic microspheres. Immune responses induced by these particulate proteins administered without adjuvant were compared to those stimulated by the soluble antigens injected with alum. We currently demonstrated that, in monkeys, particulate antigens administered without adjuvant, induced good PBMC proliferative response and antibody production. Furthermore, the analysis of antibody responses using mAbs specific for different Saimiri sciureus immunoglobulins showed that the antibody response profiles were different in monkeys immunized with soluble versus particulate form of antigens. Results of this study demonstrate that particulate form of antigen may stimulate qualitatively different immune responses as compared to alum and therefore suggest that this new antigen formulation could be an attractive candidate for the development of vaccines.  相似文献   

16.
Bovine hyperimmune anti-Cryptosporidium colostrum immunoglobulin (BACI) decreases the intensity of Cryptosporidium parvum infection in vitro. We investigated the prophylactic effect of BACI in healthy adults challenged with C. parvum. After we established an oocyst dose that resulted in 100% infection in four volunteers (baseline group), 16 volunteers were randomized to receive (1) BACI prior to C. parvum challenge (BACI group) and a nonfat milk placebo 30 minutes later, (2) BACI prior to and 30 minutes after challenge (reinforced BACI group), or (3) nonfat milk placebo prior to and 30 minutes after challenge. Subjects received BACI (10 g) or nonfat milk placebo three times a day for a total of 5 days and were followed for clinical symptoms and oocyst excretion for 30 days. A trend toward less diarrhea (P = .08) was observed for subjects receiving BACI in comparison with occurrences in placebo recipients. Subjects receiving BACI or nonfat milk placebo had a 100-fold reduction in oocyst excretion as compared with excretion in the baseline group.  相似文献   

17.
Decoquinate administered orally in a grain mix at dosages of 0.5, 0.538, 0.7, and 0.8 mg/kg of body weight suppressed oocyst discharge and bloody diarrhea in calves inoculated 3 days later with 100,000 oocysts of Eimeria bovis (experiment 1, n = 12 calves) or with 100,000 oocysts each of E bovis and Eimeria zuernii (experiment 2, n = 16 calves). Doses of 0.1, 0.163, 0.243, 0.3, and 0.362 mg/kg of body weight gave only partial suppression of oocyst discharge and diarrhea. Clinical signs of coccidiosis did not recur for 23 days after the treatment was discontinued.  相似文献   

18.
Acetyl-N-Ser-Asp-Lys-Pro (AcSDKP) demonstrated hemato-protective activity in mice after sublethal irradiation (7 GY). Bone marrow interleukin-3 (IL-3)-responsive colony-forming cells (CFC and high proliferative potential colony-forming cells (HPP-CFC) were significantly (p < 0.05) increased by day 10 after irradiation in mice receiving a continuous infusion of 1000 ng/day of AcSDKP compared to irradiated control mice. The maximum protective effect for bone marrow progenitors was achieved when AcSDKP was administered for 3 days beginning 24 hours before irradiation. Other dosages and schedules in relationship to irradiation were less active. Further, when granulocyte colony-stimulating factor (G-CSF) was administered for 10 days beginning 24 hours before irradiation. Other dosages and schedules in relationship to irradiation were less active. Further, when granulocyte colony-stimulating factor (G-CSF) was administered for 10 days after AcSDKP infusion in irradiated mice, significantly increased numbers of IL-3 responsive CSF-only control mice. In addition, platelets were significantly (p < 0.05) increased in mice receiving AcSDKP and G-CSF on days 18 and 21 after irradiation compared with mice receiving G-CSF alone. We conclude that ACSDKP has a radioprotective effect in vivo for progenitor cells, and that time of initiation and duration of AcSDKP administration relative to irradiation are crucial for these effects. Further, AcSDKP has a significant additive protective effect not only for progenitor cells but also for platelets when given in combination with G-CSF. We suggest that these in vivo observations provide a basis on which to design optimal clinical hypothesis and protocols.  相似文献   

19.
Two neutralizing, fusion-inhibiting bovine monoclonal antibodies (MAbs; B4 and B13) directed at different epitopes on the fusion protein of respiratory syncytial virus (RSV) protected the lungs of gnotobiotic calves from RSV infection. The MAbs were administered intratracheally 24 h before the calves were challenged with bovine RSV. A third, nonneutralizing, non-fusion-inhibiting but complement-fixing MAb, B1, provided no significant protection against infection, and the disease was not exacerbated. Pneumonic consolidation and mean virus titer in lung 7 days after challenge were significantly lower in calves given the fusion-inhibiting MAbs than in either control calves or those given MAb B1. The proliferative bronchiolitis with syncytial formation and widespread distribution of RSV antigen in the lower respiratory tract of the B1-treated and control calves were indistinguishable and typical of experimental bovine RSV infection. Syncytia were markedly absent, and little or no viral antigen was detected in either the B4- or B13-treated calves.  相似文献   

20.
Lymph node and spleen cells from mice immunized with sea nettle (Chrysaora quinquecirrha) venom exhibited a proliferative response after exposure to the homologous antigen or that of a related jellyfish, Physalia (Portuguese man-o'-war). Native venom was a more effective stimulant than heated, non-lethal venom. Ultraviolet light treatments administered to the skin either before or after venom sensitization suppressed the proliferative response of these internal immune cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号