首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
Emission properties of PbO–Bi2O3–Ga2O3 glasses doped with Ho3+ were investigated for fiber-optic amplification at the 1.18 μm wavelength region. When the glasses were doped with Ho3+ ions only, there was a weak emission at 1.18 μm with a lifetime of ∼200 μs. However, when Yb3+ ions were codoped, the lifetime of the 1.18 μm emission increased to 630 μs together with a significant increase in intensity. A similar enhancement in the intensity and lifetimes was realized for the 2.05 μm emission. These effects are due to energy transfer from the Yb3+:2F5/2 to the Ho3+:5I6 level. Devitrification of the ternary PbO–Bi2O3–Ga2O3 glasses was efficiently suppressed by adding 10 mol% GeO2. Optimum Ho3+ concentration was ∼0.4 mol%, whereas Yb3+ ions can be added up to the solubility limit.  相似文献   

2.
The previously studied system GeO2-Bi2O3-TI2O was extended with the addition of PbO using air- and water-quenched melted samples. Large areas of glass formation were found in the systems GeO2–Bi2O3–PbO and GeO2–PbO–Tl2O at all but the lowest GeO2 contents. Glasses were examined by powder X-ray diffraction, differential thermal analysis, thermomechanical analysis, and Archimedes'technique to obtain glass transition and crystallization exotherm temperatures, thermal expansion coefficients, and densities, which are presented in diagrams for the GeO2-PbO binary and for the two ternary systems. Based on calculated values of λ0, the wavelength for zero material dispersion, compositions in this system may be useful for construction of ultralow-loss optical waveguides in the μm region.  相似文献   

3.
Emission properties and energy transfer of PbO–Bi2O3–Ga2O3–GeO2 glasses codoped with Tm3+ and Tb3+ ions were investigated. The 1.48-μm emission due to the Tm3+:3H43F4 transition can be used to amplify the S-band (1460–1530-nm) signal light. With Tb3+ addition, the lifetime and emission intensity of the Tm3+:3F4 level decreased sharply via the Tm3+:3F4→Tb3+:7F0,1,2 energy transfer. Population densities of the 3F4 and 3H4 levels in Tm3+ calculated from rate equations clearly verified that population inversion in Tm3+ ions became possible with as little as 0.1 mol% of Tb3+ addition.  相似文献   

4.
We report the spectroscopic properties of Tm3+-doped and Tm3+/Ho3+-codoped [Ga2O3–GeO2–Bi2O3–PbO (PbF2)] glasses for S-band optical amplifications. The Judd–Ofelt intensity parameters have been determined based on the measured absorption spectra. It is found that PbF2-modified glasses exhibit a lower Ω2 value, and the addition of PbF2 caused the chemical bond associated with Tm3+ ions to be more ionic. The PbF2-free glasses have large peak emission cross-sections in the range of 2.15–2.18 × 10−21 cm2. Meanwhile, the studied glasses exhibit broad 1.47 μm emission with the full width at half-maximum of 119–126 nm. The results indicate that these glasses are useful host material for broadband S-band fiber amplifiers.  相似文献   

5.
Interaction between Barium Titanate and Binary Glasses   总被引:2,自引:0,他引:2  
Interactions between BaTiO3, and three binary glasses were studied through the reaction of BaTiO3, powder with glass powder. For PbO–B2O3 and PbO–SiO2 glasses, the reaction led to stable compound formation, the substitution of Pb in the BaTiO3 structure, and noticeable grain growth of BaTiO3. The interaction phenomena for these two glass systems were very similar. The substitution of Pb into BaTiO3 is assisted by chemical reactions in which BaB2O4 or Ba2SiO4 is formed. The substitution into BaTiO3 also seems to be closely related to the grain growth of BaTiO3. On the other hand, only compound formation was observed during the processing of BaTiO3 with Bi2O3–B2O3 glass. Neither BaTiO3 grain growth nor Bi substitution took place with the Bi2O3–B2O3 glass system. Based on the observed reactions and the glass viscosity, several sintering aids for BaTiO3 ceramic products are suggested in this paper.  相似文献   

6.
The surface tension and density of x Bi2O3–(1− x )GeO2 (BGO) melts have been measured systematically from their respective melting points up to around 1480 K within 0.25≤ x ≤0.86. With the addition of Bi2O3, the density of this system increased smoothly with a positive curvature. Deviation of molar volume from ideality of this system melts decreased firstly, past a minimum at about x =0.4, and then increased. Partial molar volumes of Bi2O3 and GeO2 have also been calculated based on the measured density data and compared with those of a binary bismuth borate system. On increasing the content of Bi2O3, the surface tension of BGO melts increased slowly when x <∼0.40, past a maximum at about x =0.50, and then decreased rapidly. In addition, the temperature coefficient of surface tension remained positive within the lower content range of Bi2O3, changed sign from positive to negative at about x =0.38, and then was almost independent of the composition within the measured temperature range when the Bi2O3 content was increased further.  相似文献   

7.
Solid-state synthesis of compositions from the Bi2O3–TeO2 system show that, under an oxygen atmosphere, Te4+ oxidizes to Te6+ and yields four room-temperature stable compounds: Bi2Te2O8, Bi2TeO6, Bi6Te2O15, and new a compound with the nominal composition 7Bi2O3·2TeO2. Dense ceramics can be prepared from all these compounds by sintering between 650° and 800°C under an oxygen atmosphere. The permittivity of these compounds varies from ∼30 to ∼54, the Q × f value from 1.100 to 41.000 GHz (∼5 GHz), and the temperature coefficient of resonant frequency from −43 to −144 ppm/K. Bi6Te2O15 and 7Bi2O3·2TeO2 do not react with silver, and, therefore, they have the potential to be used for applications in low-temperature cofired ceramic (LTCC) technology.  相似文献   

8.
Point defects were found in as-quenched GeO2, 65CaO35Al2O3, and 65SrO35Ga2O3 glasses on the basis of electron paramagnetic resonance (EPR) measurements. These defects were identified as Ge É centers in GeO2 glass and O-2, O-3, and M-OHC (oxygen hole center) (where M = Al, Ga) in 65CaO35Al2O3 and 65SrO35Ga2O3 glasses. The formation of Ge É centers in as-quenched GeO2 glass was due to the thermodynamic stability of GeO at the melting temperature. The latter oxygen-excess defects are supposed to be formed by excess oxygen ions derived from the modifiers in the aluminate and gallate glasses during the formation of these glasses. To investigate some of the properties of the oxygen-excess defects in the calcium aluminate and strontium gallate glasses, chromium ions were doped in these glasses as a probe and the relationship between the valency state of the chromium ion and the defects was determined. We conclude that the peroxy bonding (-O-O-) oxidizes the Cr3+ species to Cr4+. Similar defects have been identified in host compounds that are used for Cr4+ tunable lasers. These results reveal that the point defects are necessary to stabilize the Cr4+ ions in glasses and crystals.  相似文献   

9.
Bismuth borate glasses from the system: 40Bi2O3–59B2O3–1Tv2O3 (where Tv=Al, Y, Nd, Sm, and Eu) and three glasses of composition: 40Bi2O3–60B2O3, 37.5Bi2O3–62.5B2O3 and 38Bi2O3–60B2O3–2Al2O3 were prepared by melt quenching and characterized by density, UV-visible absorption spectroscopy and differential thermal analysis (DTA) studies. Bismuth borate glasses exhibit a very strong optical absorption band just below their absorption edge. Glasses were devitrified by heat treatment at temperatures above their glass transition temperatures and the crystalline phases produced in them were characterized by Fourier transform infrared (FTIR) absorption spectroscopy and X-ray diffraction (XRD). Bi3B5O12 was found to be the most abundant phase in all devitrified samples. DTA studies on glasses and FTIR and XRD analysis on crystallized samples revealed that very small amounts of trivalent ion doping causes significant changes in the devitrification properties of bismuth borate glasses; rare-earth ions promote the formation of metastable BiBO3–I and BiBO3–II phases during glass crystallization.  相似文献   

10.
Because of their thermal, dielectric, and optical properties, new glass compositions and thick-filmed transparent dielectrics containing neodymium oxide (Nd2O3) were studied as a source of purer images in plasma display panels. In the present study, PbO–B2O3–SiO2 and PbO–B2O3–SiO2–ZnO–Al2O3 were used as starting glass compositions, to which up to 25 wt% of Nd2O3 then was added. Increased amounts of Nd2O3 increased the glass transition temperature and dielectric constant of the bulk glasses and decreased the coefficient of thermal expansion. The fired thick films (around 30 μm) allowed selectively visible light to penetrate and showed deep absorption properties at 585 nm that were related to an extraneous gas from neon discharge.  相似文献   

11.
12.
Unusual droplet microaggregates are observed in TeO2-rich glasses of the systems TeO2–B2O3, TeO2–GeO2, TeO2–B2O3–GeO2, and TeO2–GeO2–V2O5. A decrease of the TeO2 content is established in the aggregates in comparison with the matrix. Their appearance is related to the process of metastable liquid-phase separation at high viscosity of the melts.  相似文献   

13.
In the system Bi2O3-SiO2-GeO2, good glasses can be formed only from limited compositional regions consisting of 2 narrow strips along the lines x Bi2O3-(100-:t) GeO2 ( x ≤40) and 40Bi2O3 y SiO2 (60- y )GeO2 (mol%); such glass is dark brown. Compositions from a large region (Bi2O3 content <40 mol%) showed immiscibility. In the binary system Bi2O3-GeO2, density and refractive index vary linearly with composition (mol%). Negative deviations of molar volume from ideality suggest that the coordination of a significant number of Ge ions is changing from 4-fold to 6-fold. Thermal expansion and electrical resistivity data are also reported.  相似文献   

14.
The thermal stability and spectroscopic properties of Er2O3-doped TeO2–GeO2–ZnO–Na2O–Y2O3 glasses for 1.5 μm fiber amplifiers were investigated. The thermal stability of the 75TeO2·20ZnO· 5Na2O glass was improved by introducing GeO2 and Y2O3. The radiative transition and the nonradiative transition have a dominant influence on the 4I13/2 level lifetime of Er3+ in high- and low-GeO2 regions, respectively. Adding Y2O3 increases the 4I13/2 level lifetime of Er3+ significantly. The Judd–Ofelt (J-O) parameter Ω6 shows a strong correlation with the 1.5 μm emission bandwidth; and the larger the Ω6, the wider the bandwidth.  相似文献   

15.
Previous studies on glass formation involving GeO2 with Bi2O3, TI2O, and PbO were extended by the use of Sb2O3. Wide areas of glass formation occur in the systems GeO2-PbO-Sb2O3 and GeO2-Bi2O3-Sb2O3 at all but the lowest GeO2 contents; the region of single-phase glasses in the system GeO2-Tl2O-Sb2O3 is severely restricted. Glasses were examined by powder X-ray diffraction, differential thermal analysis, thermomechanical analysis, and Archimedes'technique to obtain glass transition and crystallization exotherm temperatures, thermal expansion coefficients, and densities; these properties are presented in diagrams for the GeO2-Sb2O3 binary and for two ternary systems. Based on calculated values of Δo,the waveleneth for zero material dispersion. and dM/dΔ . the material disiersion slope at Δo, compositions in these systems may be useful for the construction of ultralow-loss optical waveguides in the 3 to 4 μm region.  相似文献   

16.
The glass formation region, crystalline phases, second harmonic (SH) generation, and Nd:yttrium aluminum garnet (YAG) laser-induced crystallization in the Sm2O3–Bi2O3–B2O3 system were clarified. The crystalline phases of Bi4B2O9, Bi3B5O12, BiBO3, Sm x Bi1− x BO3, and SmB3O6 were formed through the usual crystallization in an electric furnace. The crystallized glasses consisting of BiBO3 and Sm x Bi1− x BO3 showed SH generations. The formation of the nonlinear optical BiB3O6 phase was not confirmed. The formation (writing) region of crystal lines consisting of Sm x Bi1− x BO3 by YAG laser irradiation was determined, in which Sm2O3 contents were∼10 mol%. The present study demonstrates that Sm2O3–Bi2O3–B2O3 glasses are promising materials for optical functional applications.  相似文献   

17.
Optical and material properties of (75− x )TeO2– x GeO2–20ZnO–5Na2O–0.1Tm2O3 glasses were investigated as candidate materials for an S-band Tm-doped fiber amplifier (TDFA). With increasing GeO2 content, the lifetime and the quantum efficiency of the 1.46 μm emission decreased slightly, while the emission bandwidth, the Vickers hardness, and thermal stability of the glass improved monotonically. Above 20 mol% GeO2, the quantum efficiency decreased more rapidly with increasing GeO2. We conclude that addition of a small amount of germania may improve material properties without deteriorating the optical properties of doped Tm3+, and thus the germanotellurite fiber may be a more reliable material for the S-band TDFA in wavelength-division-multiplexing telecommunication.  相似文献   

18.
Structure of x PbO–(100− x )SiO2 ( x =25–89) glasses has been investigated by means of the X-ray and neutron diffraction and 29Si MAS NMR measurements. In the radial distribution functions of all the glasses, the Pb–O correlation was observed at 0.23 nm, indicating that the PbO3 trigonal pyramids units do exist in the whole glass forming composition range. Furthermore the existence of the first Pb–Pb correlation at ∼0.385 nm in the whole composition range suggests that the basic structural unit is considered to be a Pb2O4 unit, which consists of the edge-shared PbO3 trigonal pyramids. These results strongly imply that the Pb2O4 units participate in the glass network constructed by SiO4 tetrahedra even at low PbO content. Differing from other lead-containing glass systems, these structural characteristics of Pb ions in the PbO–SiO2 glass system are responsible for the extremely wide glass-forming region.  相似文献   

19.
Density and viscosity results are presented for ternary Na2O·GeO2·B2O3 melts (∼600° to 1300°C) and glasses containing as much as 35 mole % Na2O. Synthetic partial molar volume models indicate a fairly broad stability region for BO4 tetrahedra in the B2O3-rich melts. Similar models for GeO2-rich melts reveal a more limited stability region for GeO6 octahedra. The expansion coefficient contours and viscosity isotherms confirm the volume-based conclusions for the liquid state. The high-temperature volume models were used to develop glass volume models that agree to within several percent of experiment. It has been concluded that the melts and glasses possess similar structures. The relatively greater compositional stability of GeO6 octahedra in the presence of B2O3 (compared to Al2O3) can be related to the smaller average number of oxygens around boron (III), at a fixed O/Ge ratio, compared to aluminum (III). Evidence is presented for a slight decrease of the thermal stability of GeO6 octahedra in the GeO2-rich melts above about 1000°C.  相似文献   

20.
Emission properties of 2.0 μm fluorescence and the energy transfer between Ho3+ and Tm3+ in 57PbO·25Bi2O3·18Ga2O3 (mol%) glass codoped with Ho3+ and Tm3+ were investigated. Cross-relaxation rates in Tm3+ increased approximately 5 times when the Tm2O3 concentration was increased from 1.0 to 1.5 wt%. Coefficients of the forward Tm3+→ Ho3+ energy transfer were about 15 times larger than those of the Tm3+← Ho3+ backward transfer. Analysis of the energy transfer and gain spectra indicated that the highest gain at the 2.0 μm wavelength region could be achieved from the glass with 1.5 wt% of Tm2O3 and 0.3 wt% of Ho2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号