首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, a new static resistivity image reconstruction algorithm is proposed utilizing internal current density data obtained by magnetic resonance current density imaging technique. This new imaging method is called magnetic resonance electrical impedance tomography (MREIT). The derivation and performance of J-substitution algorithm in MREIT have been reported as a new accurate and high-resolution static impedance imaging technique via computer simulation methods. In this paper, we present experimental procedures, denoising techniques, and image reconstructions using a 0.3-tesla (T) experimental MREIT system and saline phantoms. MREIT using J-substitution algorithm effectively utilizes the internal current density information resolving the problem inherent in a conventional EIT, that is, the low sensitivity of boundary measurements to any changes of internal tissue resistivity values. Resistivity images of saline phantoms show an accuracy of 6.8%-47.2% and spatial resolution of 64 x 64. Both of them can be significantly improved by using an MRI system with a better signal-to-noise ratio.  相似文献   

2.
Electrical impedance tomography using induced currents   总被引:6,自引:0,他引:6  
The mathematical basis of a new imaging modality, induced current electrical impedance tomography (EIT), is investigated, The ultimate aim of this technique is the reconstruction of conductivity distribution of the human body, from voltage measurements made between electrodes placed on the surface, when currents are induced inside the body by applied time varying magnetic fields. In this study the two-dimensional problem is analyzed. A specific 9-coil system for generating nine different exciting magnetic fields (50 kHz) and 16 measurement electrodes around the object are assumed, The partial differential equation for the scaler potential function in the conductive medium is derived and finite element method (FEM) is used for its solution. Sensitivity matrix, which relates the perturbation in measurements to the conductivity perturbations, is calculated. Singular value decomposition of the sensitivity matrix shows that there are 135 independent measurements. It is found that measurements are less sensitive to changes in conductivity of the object's interior. While in this respect induced current EIT is slightly inferior to the technique of injected current EIT (using Sheffield protocol), its sensitivity matrix is better conditioned. The images obtained are found to be comparable to injected current EIT images In resolution. Design of a coil system for which parameters such as sensitivity to inner regions and condition number of the sensitivity matrix are optimum, remains to be made.  相似文献   

3.
In electrical impedance tomography (EIT), an estimate for the cross-sectional impedance distribution is obtained from the body by using current and voltage measurements made from the boundary. All well-known reconstruction algorithms use a full set of independent current patterns for each reconstruction. In some applications, the impedance changes may be so fast that information on the time evolution of the impedance distribution is either lost or severely blurred. Here, the authors propose an algorithm for EIT reconstruction that is able to track fast changes in the impedance distribution. The method is based on the formulation of EIT as a state-estimation problem and the recursive estimation of the state with the aid of the Kalman filter. The performance of the proposed method is evaluated with a simulation of human thorax in a situation in which the impedances of the ventricles change rapidly. The authors show that with optimal current patterns and proper parameterization, the proposed approach yields significant enhancement of the temporal resolution over the conventional reconstruction strategy  相似文献   

4.
An experimental study of induced-current electrical impedance tomography verifies that image quality is enhanced by employing six rather than three induction coils by increasing the number of independent measurements. However, with an increasing number of coils, the inverse problem becomes more sensitive to measurement noise. Using 16 electrodes to measure surface voltages, it is possible to collect 6×15=90 independent measurements. For comparison purposes, images of two-dimensional conductivity perturbations are reconstructed by using the data for three and six coils with the truncated pseudoinverse algorithm. By searching for the optimal truncation index that minimizes the noise error plus the resolution error, the signal-to-noise ratio of the data acquisition system was established as 58 db. Images obtained with this six-coil system reveal the sizes and locations of the conductivity perturbations. This system also provides images within the central region of the object space, a capability not achieved in previous experimental studies using only three circular coils. Nevertheless, the three-coil system can identify the conductivity perturbations near the periphery. However, it displays shifts in the locations and spread in the sizes of perturbations near the center of the object  相似文献   

5.
Several noninvasive modalities including electrical impedance tomography (EIT), magnetic induction tomography (MIT), and induced-current EIT (ICEIT) have been developed for imaging the electrical conductivity distribution within a human body. Although these modalities differ in how the excitation and detection circuitry (electrodes or coils) are implemented, they share a number of common principles not only within the image reconstruction approaches but also with respect to the basic principle of generating a current density distribution inside a body and recording the resultant electric fields. In this paper, we are interested in comparing differences between these modalities and in theoretically understanding the compromises involved, despite the increased hardware cost and complexity that such a multimodal system brings along. To systematically assess the merits of combining data, we performed 3-D simulations for each modality and for the multimodal system by combining all available data. The normalized sensitivity matrices were computed for each modality based on the finite element method, and singular value decomposition was performed on the resultant matrices. We used both global and regional quality measures to evaluate and compare different modalities. This study has shown that the condition number of the sensitivity matrix obtained from the multimodal tomography with 16-electrode and 16-coil is much lower than the condition number produced in the conventional 16-channel EIT and MIT systems, and thus, produced promising results in terms of image stability. An improvement of about 20% in image resolution can be achieved considering feasible signal-to-noise ratio levels.  相似文献   

6.
Electrical impedance tomography (EIT) is an imaging technique that attempts to reconstruct the impedance distribution inside an object from the impedance between electrodes placed on the object surface. The EIT reconstruction problem can be approached as a nonlinear nonconvex optimization problem in which one tries to maximize the matching between a simulated impedance problem and the observed data. This nonlinear optimization problem is often ill-posed, and not very suited to methods that evaluate derivatives of the objective function. It may be approached by simulated annealing (SA), but at a large computational cost due to the expensive evaluation process of the objective function, which involves a full simulation of the impedance problem at each iteration. A variation of SA is proposed in which the objective function is evaluated only partially, while ensuring boundaries on the behavior of the modified algorithm.  相似文献   

7.
Electrical impedance tomography (EIT) is an imaging modality that estimates the electrical properties at the interior of an object from measurements made on its surface. Typically, currents are injected into the object through electrodes placed on its surface, and the resulting electrode voltages are measured. An appropriate set of current patterns, with each pattern specifying the value of the current for each electrode, is applied to the object, and a reconstruction algorithm uses knowledge of the applied current patterns and the measured electrode voltages to solve the inverse problem, computing the electrical conductivity and permittivity distributions in the object. This article focuses on the type of EIT called adaptive current tomography (ACT) in which currents are applied simultaneously to all the electrodes. A number of current patterns are applied, where each pattern defines the current for each electrode, and the subsequent electrode voltages are measured to generate the data required for image reconstruction. A ring of electrodes may be placed in a single plane around the object, to define a two-dimensional problem, or in several layers of such rings, to define a three-dimensional problem. The reconstruction problem is described and two algorithms are discussed, a one-step, two-dimensional (2-D) Newton-Raphson algorithm and a one-step, full three-dimensional (3-D) reconstructor. Results from experimental data are presented which illustrate the performance of the algorithms  相似文献   

8.
This paper is built upon the assumption that in electrical impedance tomography, vectors of voltages and currents are linearly dependent through a resistance matrix. This linear relationship was confirmed experimentally and may be derived analytically under certain assumptions regarding electrodes (Isaacson, 1991). Given measurement data consisting of voltages and currents, we treat this relationship as a linear statistical model. Thus, our goal is not to reconstruct the image but directly estimate its electromagnetic properties reflected in the resistance and/or conductance matrix using electrical impedance tomography (EIT) measurements of voltages and currents on the periphery of the body. Since no inverse problem is involved the algorithm for estimation merely reduces to one matrix inversion. We estimate the impedance resistance matrix using well established statistical inference techniques for linear regression models. We provide a comprehensive treatment for a two-dimensional homogeneous body of a circular shape, by which many concepts of electrical impedance tomography, such as width of electrodes, the difference between voltage-current and current-voltage systems are illustrated. Our theory may be applied to various tests including EIT hardware calibration and whether the medium is homogeneous. These tests are illustrated on phantom agar data.  相似文献   

9.
In this paper, we propose an algorithm that, using the extended Kalman filter, solves the inverse problem of estimating the conductivity/resistivity distribution in electrical impedance tomography (EIT). The algorithm estimates conductivity/resistivity in a wide range. The purpose of this investigation is to provide information for setting and controlling air volume and pressure delivered to patients under artificial ventilation. We show that, when the standard deviation of the measurement noise level raises up to 5% of the maximal measured voltage, the conductivity estimates converge to the expected vector within 7% accuracy of the maximal conductivity value, under numerical simulations, with spatial a priori information. A two-phase identification procedure is proposed. A cylindrical phantom with saline solution is used for experimental evaluation. An abrupt modification on the resistivity distribution of this solution is caused by the immersion of a glass object. Estimates of electrode contact impedances and images of the glass object are presented.  相似文献   

10.
We propose the use of electrical impedance tomography (EIT) imaging techniques in the measurement of lung resistivity for detection and monitoring of apnea and edema. In EIT, we inject currents into a subject using multiple electrodes and measure boundary voltages to reconstruct a cross-sectional image of internal resistivity distribution. We found that a simplified, therefore fast, version of the impedance imaging method can be used for detection and monitoring of apnea and edema. We have showed the feasibility of this method through computer simulations and human experiments. We speculate that the EIT imaging technique will be more reliable than the current impedance apnea monitoring method, since we are monitoring the change of internal lung resistivity. However, more study is required to verify that this method performs better in the presence of motion artifact than the conventional two-electrode impedance apnea monitoring method. Future work should include experiments which carefully simulate different kinds of motion artifacts.  相似文献   

11.
Electrical impedance tomography (EIT) is a technique that computes the cross-sectional impedance distribution within the body by using current and voltage measurements made on the body surface. It has been reported that the image reconstruction is distorted considerably when the boundary shape is considered to be more elliptical than circular as a more realistic shape for the measurement boundary. This paper describes an alternative framework for determining the distinguishability region with a finite measurement precision for different conductivity distributions in a body modeled by elliptic cylinder geometry. The distinguishable regions are compared in terms of modeling error for predefined inhomogeneities with elliptical and circular approaches for a noncircular measurement boundary at the body surface. Since most objects investigated by EIT are noncircular in shape, the analytical solution for the forward problem for the elliptical cross section approach is shown to be useful in order to reach a better assessment of the distinguishability region defined in a noncircular boundary. This paper is concentrated on centered elliptic inhomogeneity in the elliptical boundary and an analytic solution for this type of forward problem. The distinguishability performance of elliptical cross section with cosine injected current patterns is examined for different parameters of elliptical geometry.  相似文献   

12.
Optimal experiments in electrical impedance tomography   总被引:2,自引:0,他引:2  
Electrical impedance tomography (EIT) is a noninvasive imaging technique which aims to image the impedance within a body from electrical measurements made on the surface. The reconstruction of impedance images is a ill-posed problem which is both extremely sensitive to noise and highly computationally intensive. The authors define an experimental measurement in EIT and calculate optimal experiments which maximize the distinguishability between the region to be imaged and a best-estimate conductivity distribution. These optimal experiments can be derived from measurements made on the boundary. The analysis clarifies the properties of different voltage measurement schemes. A reconstruction algorithm based on the use of optimal experiments is derived. It is shown to be many times faster than standard Newton-based reconstruction algorithms, and results from synthetic data indicate that the images that it produces are comparable.  相似文献   

13.
We developed a new algorithm that estimates locations and sizes of anomalies in electrically conducting medium based on electrical impedance tomography (EIT) technique. When only the boundary current and voltage measurements are available, it is not practically feasible to reconstruct accurate high-resolution cross-sectional conductivity or resistivity images of a subject. In this paper, we focus our attention on the estimation of locations and sizes of anomalies with different conductivity values compared with the background tissues. We showed the performance of the algorithm from experimental results using a 32-channel EIT system and saline phantom. With about 1.73% measurement error in boundary current-voltage data, we found that the minimal size (area) of the detectable anomaly is about 0.72% of the size (area) of the phantom. Potential applications include the monitoring of impedance related physiological events and bubble detection in two-phase flow. Since this new algorithm requires neither any forward solver nor time-consuming minimization process, it is fast enough for various real-time applications in medicine and nondestructive testing.  相似文献   

14.
As shown previously for two-dimensional geometries, anisotropy effects should not be ignored in electrical impedance tomography (EIT) and structural information is important for the reconstruction of anisotropic conductivities. Here, we describe the static reconstruction of an anisotropic conductivity distribution for the more realistic three-dimensional (3-D) case. Boundaries between different conductivity regions are anatomically constrained using magnetic resonance imaging (MRI) data. The values of the conductivities are then determined using gradient-type-algorithms in a nonlinear-indirect approach. At each iteration, the forward problem is solved by the finite element method. The approach is used to reconstruct the 3-D conductivity profile of a canine torso. Both computational performance and simulated reconstruction results are presented together with a detailed study on the sensitivity of the prediction error with respect to different parameters. In particular, the use of an intracavity catheter to better extract interior conductivities is demonstrated  相似文献   

15.
静态阻抗断层图像重建新方法   总被引:3,自引:0,他引:3  
侯卫东  莫玉龙 《电子学报》2003,31(7):1083-1085
阻抗断层图像重建是一个严重病态的非线性的逆问题,特别是在静态阻抗断层成像中,由于其图像重建模型误差和测量噪声的影响更为严重,因此常用的基于目标函数梯度信息不断迭代的改进的Newton-Raphson类重建算法,即使使用正则化技术,其稳定性仍较差,甚至发散.本文提出一种全新的静态阻抗断层图像重建方法,它利用基于生物自然选择与遗传机理的遗传算法去搜索阻抗图像重建问题的最优解,无需正则化技术,也不会象改进的Newton-Raphson类算法那样易陷入局部最优解.实验结果也表明基于遗传算法的图像重建方法重建的静态阻抗断层图像,其成像精度和空间分辨率都大大好于改进的Newton-Raphson类重建算法.  相似文献   

16.
In electrical impedance tomography (EIT), the measured voltages are sensitive to electrode-skin contact impedance because the contact impedance and the current density through it are both high. Large electrodes were used to provide a more uniform current distribution and reduce the contact impedance. A large electrode differs from a point electrode in that it has shunting and edge effects that cannot be modeled by a single resistor. The finite-element method (FEM) was used to study the electric field distributions underneath an electrode, and three models were developed: a FEM model, a simplified FEM model, and a weighted load model. The FEM models considered both shunting and edge effects and closely matched the experimental measurements. It is concluded that FEM models of electrodes can be used to improve the performance of an electrical impedance tomography reconstruction algorithm  相似文献   

17.
The temperature-dependent impedivity of rat liver, transverse abdominal muscle and full skin was determined in vitro as a function of frequency across the temperature range 5 degrees C to 37 degrees C and from 100 Hz to 10 kHz. This study was motivated by an increasing interest in using electrical impedance tomography (EIT) for imaging of cryosurgery and a lack of applicable data in the hypothermic range. Using a controlled-temperature impedance analyzer, it was found that as the temperature is reduced the resulting increase in tissue impedivity is more pronounced at low frequencies and that the beta dispersion, resulting from cell membrane polarization, shifts to lower frequencies. With these new data a simple case study of EIT of liver cryosurgery was examined, using a finite-element model incorporating the Pennes bio-heat equation, to determine the impact of this behavior on imaging accuracy. Overestimation of the ice-front position was found to occur if the EIT system ignored the effects of the low-temperature zone surrounding the frozen tissue. This error decreases with increasing blood perfusion and with higher measurement frequencies.  相似文献   

18.
The effectiveness of cryosurgery in treating tumors is highly dependent on knowledge of freezing extent, and therefore relies heavily on real-time imaging techniques for monitoring. Electrical impedance tomography (EIT), which utilizes tissue impedance variation to construct an image, is very well suited to cryosurgery since frozen tissue impedance is much higher than that of unfrozen tissue. In this study, we explore cryosurgical monitoring as a previously uninvestigated application for EIT. The feasibility of bio-impedance measurements to detect ice front propagation is demonstrated by freezing planar tissue samples one-dimensionally while measuring impedance along a linear array. The experimental results compare favorably to a simple finite element model designed to provide an electrical field visualization tool.  相似文献   

19.
Comparison of applied and induced current electrical impedance tomography   总被引:1,自引:0,他引:1  
Several papers on induced current electrical impedance tomography (IC-EIT) have dwelt on potential advantages of this technique over conventional EIT which uses applied current (AC-EIT). Experimental evidence that IC-EIT could surpass AC-EIT in similar imaging conditions is lacking. In this paper, we describe a system that can switch rapidly between both AC-EIT and IC-EIT. The system makes it possible to image objects in a saline-filled tank, providing data acquired in identical test conditions for comparing the performance of the two modes. The system uses eight circular coils and 16 electrodes to acquire 120 linearly independent measurements in IC-EIT and 104 in AC-EIT. Difference images were reconstructed from data acquired with both modes using the maximum a posteriori method. Spatial resolution was lower in IC-EIT images than in AC-EIT, especially in the radial direction. IC-EIT also exhibits a bias toward the center for positioning a conductivity perturbation. These results were obtained for a typical coil configuration widely used in the literature and may not be representative of alternate coil configurations. The system described in this paper provides stable experimental conditions for comparing the performance of the two EIT imaging modes and would be a valuable tool for validating new coil configurations.  相似文献   

20.
An algorithm is developed for electrical impedance tomography (EIT) of finite cylinders with general cross-sectional boundaries and translationally uniform conductivity distributions. The electrodes for data collection are assumed to be placed around a cross-sectional plane; therefore, the axial variation of the boundary conditions and the potential field are expanded in Fourier series. For each Fourier component a two-dimensional (2-D) partial differential equation is derived. Thus the 3-D forward problem is solved as a succession of 2-D problems, and it is shown that the Fourier series can be truncated to provide substantial savings in computation time. The finite element method is adopted and the accuracy of the boundary potential differences (gradients) thus calculated is assessed by comparison to results obtained using cylindrical harmonic expansions for circular cylinders. A 1016-element and 541-node mesh is found to be optimal. The algorithm is applied to data collected from phantoms, and the errors incurred from the several assumptions of the method are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号