首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
最近涌现了各种进化方法来解决多目标优化问题,分散搜索也是一种可以解决多目标问题的算法。该算法的结构引用进化算法的杂交和变异算子来增强它的性能,但该算法与其他进化算法的不同在于一系列操作策略不再基于随机性原理,而是运用“分散-收敛集聚”的迭代机制。论文在多目标优化问题区域讨论分散搜索算法,寻找多目标的非支配集或Pareto最优解。实验表明,分散搜索算法具有很好的收敛性和分布性。  相似文献   

2.
侯莹  吴毅琳  白星  韩红桂 《控制与决策》2023,38(7):1816-1824
针对多目标差分进化算法求解复杂多目标优化问题时,最优解选择策略中非支配排序计算复杂度高的问题,提出一种数据驱动选择策略的多目标差分进化(MODE-DDSS)算法.首先,设计多目标差分进化算法的优化解排序等级评估准则,建立基于评估准则的优化解排序等级评估库;其次,设计基于优化解双向搜索机制和无重复比较机制的数据驱动选择策略,实现优化解的高效搜索和快速排序;最后,构建数据驱动选择策略的多目标差分进化算法,降低算法在最优解选择操作中的时间复杂度,提高算法的寻优效率.实验结果表明,所提出的MODE-DDSS算法能够有效减少最优解在选择过程中的比较次数,提升多目标差分进化算法解决复杂多目标优化问题的寻优效率.  相似文献   

3.
侯薇  董红斌  印桂生 《计算机科学》2014,41(2):114-118,152
利用基于分解的多目标进化算法框架(MOEA/D),将混合策略的进化算法用于求解分解后的若干单目标优化子问题,提出了一种带局部搜索的基于分解的多目标混合策略进化算法(LMS-MOEA/D)。算法利用均匀设计产生子问题的聚合权重向量,混合交叉策略能够充分利用不同交叉算子的优势;同时算法针对演化过程收敛的特点,结合局部搜索策略,获得逼近Pareto前沿的最优解集。最后通过实验验证算法在多样性和收敛性方面的有效性。  相似文献   

4.
为了改进多目标进化算法的收敛性和解集的多样性,提出一种基于Pareto排序的混合多目标进化算法PHMOEA。在PHMOEA中使用干扰集刺激优化非支配集的构成,改善算法的收敛性和解集的分布性,并根据Pareto等级和精英保留策略改进了交叉算子和变异算子。该算法与著名的NSGA-II和SPEA2多目标进化算法在13个基准测试函数上的对比结果表明,PHMOEA算法不仅多样性较好,而且提高了算法的收敛性,并使获得的最优解集的分布性更均匀,覆盖范围更广。  相似文献   

5.
针对多目标差分进化算法求解多目标优化问题时收敛慢和均匀性欠佳等不足,提出了一种基于多策略排序变异的多目标差分进化算法。该算法利用基于排序变异算子快速接近真实的Pareto最优解,同时引入多策略差分进化算子以保持算法的多样性和分布性。通过自适应策略,动态调整控制参数以提高算法的鲁棒性。从理论证明的角度分析了所提算法的收敛性。仿真实验结果表明,本文所提算法相对于近期相关文献中的改进算法具有更好的收敛性与多样性,从而表明了所提算法的有效性。  相似文献   

6.
基于免疫的多目标优化遗传算法*   总被引:1,自引:0,他引:1  
提出一种基于免疫的多目标优化遗传算法.该算法模仿生物免疫系统过程,使用克隆选择算子和高斯变异算子提高了搜索效率和收敛性;创建了一个记忆细胞集来保存每代所产生的Pareto最优解,以便产生Pareto最优解集;提出一种有别于传统聚类算法的邻近排挤算法对记忆细胞集进行不断的更新及删除,保证了Pareto最优解集的分布均匀性.最后将该算法与SPEA算法分别进行了仿真,通过比较两者的收敛性和分布性,得到前者优于后者的结论.  相似文献   

7.
葛宇  梁静 《计算机科学》2015,42(9):257-262, 281
为将标准人工蜂群算法有效应用到多目标优化问题中,设计了一种多目标人工蜂群算法。其进化策略在利用精英解引导搜索的同时结合正弦函数搜索操作来平衡算法对解空间的开发与开采行为。另外,算法借助了外部集合来记录与维护种群进化过程中产生的Pareto最优解。理论分析表明:针对多目标优化问题,本算法能收敛到理论最优解集合。对典型多目标测试问题的仿真实验结果表明:本算法能有效逼近理论最优,具有较好的收敛性和均匀性,并且与同类型算法相比,本算法具有良好的求解性能。  相似文献   

8.
基于局部搜索与混合多样性策略的多目标粒子群算法   总被引:2,自引:0,他引:2  
贾树晋  杜斌  岳恒 《控制与决策》2012,27(6):813-818
为了提高算法的收敛性与非支配解集的多样性,提出一种基于局部搜索与混合多样性策略的多目标粒子群算法(LH-MOPSO).该算法使用增广Lagrange乘子法对非支配解进行局部搜索以快速接近Pareto最优解;利用基于改进的Maximin适应值函数与拥挤距离的混合多样性策略对非支配解集进行维护以保留解的多样性,同时引入高斯变异算子以避免算法早熟收敛;最后针对多目标约束优化问题,给出一种有效的约束处理方法.实验研究表明该算法具有良好的优化性能.  相似文献   

9.
多目标免疫优化算法的研究目标是种群均匀分布于优化问题的非劣最优域并使算法快速收敛。为进一步提高多目标优化问题非支配解集合的分布均匀性和收敛性,提出了一种基于动态拥挤距离的混合多目标免疫优化算法。该算法基于动态拥挤距离来对个体进行比较和更新操作,从而保持最终解集的均匀分布,同时借鉴经典差分进化算法中的变异引导算子来加强免疫优化算法的局部搜索能力并提高搜索精度。基于5个经典测试函数的仿真结果表明, 与其他几种有效的多目标优化算法相比,所提算法不仅在求得Pareto最优解集的逼近性、均匀性和宽广性上有明显优势,而且收敛速度也有较大的改进和提高。  相似文献   

10.
刘敏  曾文华 《软件学报》2013,24(7):1571-1588
现实世界中的一些多目标优化问题经常受动态环境影响而不断发生变化,要求优化算法不断地及时跟踪时变的Pareto 最优解集.提出了一种记忆增强的动态多目标分解进化算法.将动态多目标优化问题分解为若干个动态单目标优化子问题并同时优化这些子问题,以便快速逼近Pareto 最优解集.给出了一个改进的环境变化检测算子,以便更好地检测环境变化.设计了一种基于子问题的串式记忆方法,利用过去类似环境下搜索到的最优解来有效地响应新的环境变化.在8 个标准的测试问题上,将新算法与其他3 种记忆增强的动态进化多目标优化算法进行了实验比较.结果表明,新算法比其他3 种算法具有更快的运行速度、更强的记忆能力与鲁棒性能,并且新算法所获得的解集还具有更好的收敛性与分布性.  相似文献   

11.
Over the last decade, a variety of evolutionary algorithms (EAs) have been proposed for solving multiobjective optimization problems. Especially more recent multiobjective evolutionary algorithms (MOEAs) have been shown to be efficient and superior to earlier approaches. An important question however is whether we can expect such improvements to converge onto a specific efficient MOEA that behaves best on a large variety of problems. In this paper, we argue that the development of new MOEAs cannot converge onto a single new most efficient MOEA because the performance of MOEAs shows characteristics of multiobjective problems. While we point out the most important aspects for designing competent MOEAs in this paper, we also indicate the inherent multiobjective tradeoff in multiobjective optimization between proximity and diversity preservation. We discuss the impact of this tradeoff on the concepts and design of exploration and exploitation operators. We also present a general framework for competent MOEAs and show how current state-of-the-art MOEAs can be obtained by making choices within this framework. Furthermore, we show an example of how we can separate nondomination selection pressure from diversity preservation selection pressure and discuss the impact of changing the ratio between these components.  相似文献   

12.
The growing popularity of multiobjective evolutionary algorithms (MOEAs) for solving many-objective problems warrants the careful investigation of their search controls and failure modes. This study contributes a new diagnostic assessment framework for rigorously evaluating the effectiveness, reliability, efficiency, and controllability of MOEAs as well as identifying their search controls and failure modes. The framework is demonstrated using the recently introduced Borg MOEA, [Formula: see text]-NSGA-II, [Formula: see text]-MOEA, IBEA, OMOPSO, GDE3, MOEA/D, SPEA2, and NSGA-II on 33 instances of 18 test problems from the DTLZ, WFG, and CEC 2009 test suites. The diagnostic framework exploits Sobol's variance decomposition to provide guidance on the algorithms' non-separable, multi-parameter controls when performing a many-objective search. This study represents one of the most comprehensive empirical assessments of MOEAs ever completed.  相似文献   

13.
Over the past few years, the research on evolutionary algorithms has demonstrated their niche in solving multiobjective optimization problems, where the goal is to find a number of Pareto-optimal solutions in a single simulation run. Many studies have depicted different ways evolutionary algorithms can progress towards the Pareto-optimal set with a widely spread distribution of solutions. However, none of the multiobjective evolutionary algorithms (MOEAs) has a proof of convergence to the true Pareto-optimal solutions with a wide diversity among the solutions. In this paper, we discuss why a number of earlier MOEAs do not have such properties. Based on the concept of epsilon-dominance, new archiving strategies are proposed that overcome this fundamental problem and provably lead to MOEAs that have both the desired convergence and distribution properties. A number of modifications to the baseline algorithm are also suggested. The concept of epsilon-dominance introduced in this paper is practical and should make the proposed algorithms useful to researchers and practitioners alike.  相似文献   

14.
Sesame is a software framework that aims at developing a modeling and simulation environment for the efficient design space exploration of heterogeneous embedded systems. Since Sesame recognizes separate application and architecture models within a single system simulation, it needs an explicit mapping step to relate these models for cosimulation. The design tradeoffs during the mapping stage, namely, the processing time, power consumption, and architecture cost, are captured by a multiobjective nonlinear mixed integer program. This paper aims at investigating the performance of multiobjective evolutionary algorithms (MOEAs) on solving large instances of the mapping problem. With two comparative case studies, it is shown that MOEAs provide the designer with a highly accurate set of solutions in a reasonable amount of time. Additionally, analyses for different crossover types, mutation usage, and repair strategies for the purpose of constraints handling are carried out. Finally, a number of multiobjective optimization results are simulated for verification.  相似文献   

15.
In the last two decades, multiobjective optimization has become main stream and various multiobjective evolutionary algorithms (MOEAs) have been suggested in the field of evolutionary computing (EC) for solving hard combinatorial and continuous multiobjective optimization problems. Most MOEAs employ single evolutionary operators such as crossover, mutation and selection for population evolution. In this paper, we suggest a multiobjective evolutionary algorithm based on multimethods (MMTD) with dynamic resource allocation for coping with continuous multi-objective optimization problems (MOPs). The suggested algorithm employs two well known population based stochastic algorithms namely MOEA/D and NSGA-II as constituent algorithms for population evolution with a dynamic resource allocation scheme. We have examined the performance of the proposed MMTD on two different MOPs test suites: the widely used ZDT problems and the recently formulated test instances for the special session on MOEAs competition of the 2009 IEEE congress on evolutionary computation (CEC’09). Experimental results obtained by the suggested MMTD are more promising than those of some state-of-the-art MOEAs in terms of the inverted generational distance (IGD)-metric on most test problems.  相似文献   

16.
进化多目标优化中由于进化算子固有的随机误差以及进化过程中选择压力和选择噪音的影响使得进化群体容易丧失多样性,而保持进化群体的多样性不仅有利于进化群体搜索,而且也是多目标优化的重要目标。对多目标进化算法的多样性策略进行了分类,在统一的框架下描述了各种策略的机制,并分析了各自的特性。随后,分析并比较了多样性保持算子的复杂度。最后,证明了一般意义下多目标进化算法的收敛性,指出在设计新的多样性策略中需要保证进化世代间的单调性,避免出现退化现象。  相似文献   

17.
It may be generalized that all Evolutionary Algorithms (EA) draw their strength from two sources: exploration and exploitation. Surprisingly, within the context of multiobjective (MO) optimization, the impact of fitness assignment on the exploration-exploitation balance has drawn little attention. The vast majority of multiobjective evolutionary algorithms (MOEAs) presented to date resort to Pareto dominance classification as a fitness assignment methodology. However, the proportion of Pareto optimal elements in a set P grows with the dimensionality of P. Therefore, when the number of objectives of a multiobjective problem (MOP) is large, Pareto dominance-based ranking procedures become ineffective in sorting out the quality of solutions. This paper investigates the potential of using preference order-based approach as an optimality criterion in the ranking stage of MOEAs. A ranking procedure that exploits the definition of preference ordering (PO) is proposed, along with two strategies that make different use of the conditions of efficiency provided, and it is compared with a more traditional Pareto dominance-based ranking scheme within the framework of NSGA-II. A series of extensive experiments is performed on seven widely applied test functions, namely, DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ6, and DTLZ7, for up to eight objectives. The results are analyzed through a suite of five performance metrics and indicate that the ranking procedure based on PO enables NSGA-II to achieve better scalability properties compared with the standard ranking scheme and suggest that the proposed methodology could be successfully extended to other MOEAs  相似文献   

18.
This paper proposes a new direction for design optimization of a water distribution network (WDN). The new approach introduces an optimization process to the conceptual design stage of a WDN. The use of multiobjective evolutionary algorithms (MOEAs) for simultaneous topology and sizing design of piping networks is presented. The design problem includes both topological and sizing design variables while the objective functions are network cost and total head loss in pipes. The numerical technique, called a network repairing technique (NRT), is proposed to overcome difficulties in operating MOEAs for network topological design. The problem is then solved by using a number of established and newly developed MOEAs. Also, two new MOEAs namely multiobjective real code population-based incremental learning (RPBIL) and a hybrid algorithm of RPBIL with differential evolution (termed RPBIL–DE) are proposed to tackle the design problems. The optimum results obtained are illustrated and compared. It is shown that the proposed network repairing technique is an efficient and effective tool for topological design of WDNs. Based on the hypervolume indicator, the proposed RPBIL–DE is among the best MOEA performers.  相似文献   

19.
Most controllers optimization and design problems are multiobjective in nature, since they normally have several (possibly conflicting) objectives that must be satisfied at the same time. Instead of aiming at finding a single solution, the multiobjective optimization methods try to produce a set of good trade-off solutions from which the decision maker may select one. Several methods have been devised for solving multiobjective optimization problems in control systems field. Traditionally, classical optimization algorithms based on nonlinear programming or optimal control theories are applied to obtain the solution of such problems. The presence of multiple objectives in a problem usually gives rise to a set of optimal solutions, largely known as Pareto-optimal solutions. Recently, Multiobjective Evolutionary Algorithms (MOEAs) have been applied to control systems problems. Compared with mathematical programming, MOEAs are very suitable to solve multiobjective optimization problems, because they deal simultaneously with a set of solutions and find a number of Pareto optimal solutions in a single run of algorithm. Starting from a set of initial solutions, MOEAs use iteratively improving optimization techniques to find the optimal solutions. In every iterative progress, MOEAs favor population-based Pareto dominance as a measure of fitness. In the MOEAs context, the Non-dominated Sorting Genetic Algorithm (NSGA-II) has been successfully applied to solving many multiobjective problems. This paper presents the design and the tuning of two PID (Proportional–Integral–Derivative) controllers through the NSGA-II approach. Simulation numerical results of multivariable PID control and convergence of the NSGA-II is presented and discussed with application in a robotic manipulator of two-degree-of-freedom. The proposed optimization method based on NSGA-II offers an effective way to implement simple but robust solutions providing a good reference tracking performance in closed loop.  相似文献   

20.
In this paper, we propose and investigate a new local search strategy for multiobjective memetic algorithms. More precisely, we suggest a novel iterative search procedure, known as the Hill Climber with Sidestep (HCS), which is designed for the treatment of multiobjective optimization problems, and show further two possible ways to integrate the HCS into a given evolutionary strategy leading to new memetic (or hybrid) algorithms. The pecularity of the HCS is that it is intended to be capable both moving toward and along the (local) Pareto set depending on the distance of the current iterate toward this set. The local search procedure utilizes the geometry of the directional cones of such optimization problems and works with or without gradient information. Finally, we present some numerical results on some well-known benchmark problems, indicating the strength of the local search strategy as a standalone algorithm as well as its benefit when used within a MOEA. For the latter we use the state of the art algorithms Nondominated Sorting Genetic Algorithm-II and Strength Pareto Evolutionary Algorithm 2 as base MOEAs.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号