首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The encephalitic alphaviruses are useful models for understanding virus-neuron interactions. A neurovirulent strain of Sindbis virus (NSV) causes fatal paralysis in mice by infecting motor neurons and inducing apoptosis of these nonrenewable cells. Antibodies to the surface glycoproteins suppress virus replication, but other recovery-promoting components of the immune response have not been recognized. We assessed the effect on the outcome of NSV-induced encephalomyelitis of immunization of mice with nonstructural proteins (nsPs) by using recombinant vaccinia viruses. Mice immunized with vaccinia virus expressing nsPs and challenged with NSV initially developed paralysis similar to unimmunized mice but then recovered neurologic function. Mice preimmunized with vaccinia virus expressing structural proteins were completely protected from paralysis. Mice immunized with vaccinia virus alone showed paralysis with little evidence of recovery. Vaccinia virus expressing only nsP2 was as effective as vaccinia virus expressing all the nsPs. Protection provided by immunity to nsPs was not associated with a reduction in virus replication or with improved antibody responses to structural proteins. Protection could not be passively transferred with nsP immune serum. The depletion of T cells at the time of NSV infection decreased protection. The data show that antiviral immune responses can improve the ability of neurons to survive infection and to recover function without altering virus replication.  相似文献   

2.
A synthetic vaccinia virus promoter (Psel) was constructed based upon sequences which increase activity of the P7.5 early/late promoter. Comparison of luciferase activity in lysates from cells infected with recombinant vaccinia viruses expressing the luciferase gene either under the control of the P7.5 promoter or Psel, demonstrated significantly enhanced activity mediated by Psel at both early and late times post infection. This promoter may be of considerable benefit in the construction of recombinant poxviruses where early foreign gene expression is important for generating a protective immune response in vaccinated animals, or in reporter/target gene expression in vitro.  相似文献   

3.
Vaccinia virus has a wide host range and infects mammalian cells of many different species. This suggests that the cell surface receptors for vaccinia virus are ubiquitously expressed and highly conserved. Alternatively, different receptors are used for vaccinia virus infection of different cell types. Here we report that vaccinia virus binds to heparan sulfate, a glycosaminoglycan (GAG) side chain of cell surface proteoglycans, during virus infection. Soluble heparin specifically inhibits vaccinia virus binding to cells, whereas other GAGs such as condroitin sulfate or dermantan sulfate have no effect. Heparin also blocks infections by cowpox virus, rabbitpox virus, myxoma virus, and Shope fibroma virus, suggesting that cell surface heparan sulfate could be a general mediator of the entry of poxviruses. The biochemical nature of the heparin-blocking effect was investigated. Heparin analogs that have acetyl groups instead of sulfate groups also abolish the inhibitory effect, suggesting that the negative charges on GAGs are important for virus infection. Furthermore, BSC40 cells treated with sodium chlorate to produce undersulfated GAGs are more refractory to vaccinia virus infection. Taken together, the data support the notion that cell surface heparan sulfate is important for vaccinia virus infection. Using heparin-Sepharose beads, we showed that vaccinia virus virions bind to heparin in vitro. In addition, we demonstrated that the recombinant A27L gene product binds to the heparin beads in vitro. This recombinant protein was further shown to bind to cells, and such interaction could be specifically inhibited by soluble heparin. All the data together indicated that A27L protein could be an attachment protein that mediates vaccinia virus binding to cell surface heparan sulfate during viral infection.  相似文献   

4.
5.
In vitro, T cell-dependent cytotoxicity is mediated by two distinct mechanisms, one being perforin-, the other Fas-dependent. The contribution of both of these mechanisms to clearance of viral infections was investigated in mice for the non-cytopathic lymphocytic choriomeningitis virus (LCMV) and the cytopathic vaccinia, vesicular stomatitis (VSV) and Semliki forest (SFV) viruses. Clearance of an acute LCMV infection was mediated by the perforin-dependent mechanism without measurable involvement of the Fas-dependent pathway. For the resolution of vaccinia virus infection and for resistance against VSV and SFV, however, neither of the two pathways was required. These data suggest that perforin-dependent cytotoxicity mediated by T cells is crucial for protection against non-cytopathic viruses, whereas infections with cytopathic viruses are controlled by nonlytic T cell-dependent soluble mediators such as cytokines (IFN-gamma against vaccinia virus) and neutralizing antibodies (against VSV and SFV).  相似文献   

6.
Early after infection, the mouse mammary tumor virus (MMTV) expresses a superantigen (SAg) at the surface of B lymphocytes. Interaction with the T-cell receptor Vbeta domain induces a polyclonal proliferative response of the SAg-reactive T cells. Stimulated T cells become anergic and are deleted from the T-cell repertoire. We have used a recombinant vaccinia virus encoding the MMTV(GR) SAg to dissect the effects of the retroviral SAg during an unrelated viral infection. Subcutaneous infection with this recombinant vaccinia virus induces a very rapid increase of Vbeta14 T cells in the draining lymph node. This stimulation does not require a large Plumber of infectious particles and is not strictly dependent on the expression of the major histocompatibility complex class II I-E molecule, as it is required after MMTV(GR) infection. In contrast to MMTV infection during which B cells are infected, we do not observe any clonal deletion of the reactive T cells following the initial stimulation phase. Our data show that contrary to the case with MMTV, macrophages but not B cells are the targets of infection by vaccinia virus in the lymph node, indicating the ability of these cells to present a retroviral SAg. The altered SAg expression in a different target cell observed during recombinant vaccinia virus infection therefore results in significant changes in the SAg response.  相似文献   

7.
An 11-year global WHO campaign for eradication of smallpox finished in October 1977 as the result of Edward Jenner's primary success in 1796, who for the first time applied human vaccination against variola virus (VARV). The 200th anniversary of this happening is a good occasion to summarize the current status of the knowledge about the role of B and T lymphocytes in the control of orthopoxvirus infections. This short review concentrates on general characteristics of orthopoxviruses and the immune response to infection, mainly by vaccinia virus (VV) and ectromelia virus (EV).  相似文献   

8.
The role of individual viral proteins in the immune response to bluetongue virus (BTV) is not clearly understood. To investigate the contributions of the outer capsid proteins, VP2 and VP5, and possible interactions between them, these proteins were expressed from recombinant vaccinia viruses either as individual proteins or together in double recombinants, or with the core protein VP7 in a triple recombinant. Comparison of the immunogenicity of the vaccinia expressed proteins with BTV expressed proteins was carried out by inoculation of rabbits and sheep. Each of the recombinants was capable of stimulating an anti-BTV antibody response, although there was a wide range in the level of response between animals and species. Vaccinia-expressed VP2 was poorly immunogenic, particularly in rabbits. VP5, on the whole, stimulated higher ELISA titers in rabbits and sheep and in some animals in both species was able to stimulate virus neutralizing antibodies. When the protective efficacy of VP2 and VP5 was tested in sheep, vaccinia-expressed VP2, VP5 and VP2 + VP5 were protective, with the most consistent protection being in groups immunized with both proteins.  相似文献   

9.
BACKGROUND: Construction of recombinant viruses that can serve as vaccines for the treatment of experimental murine tumors has recently been achieved. The cooperative effects of immune system modulators, including cytokines such as interleukin 12 (IL-12) and costimulatory molecules such as B7-1, may be necessary for activation of cytotoxic T lymphocytes. Thus, we have explored the feasibility and the efficacy of inclusion of these immunomodulatory molecules in recombinant virus vaccines in an experimental antitumor model in mice that uses Escherichia coli beta-galactosidase as a target antigen. METHODS: We developed a "cassette" system in which three loci of the vaccinia virus genome were used for homologous recombination. A variety of recombinant vaccinia viruses were constructed, including one virus, vB7/beta/IL-12, that contains the following five transgenes: murine B7-1, murine IL-12 subunit p35, murine IL-12 subunit p40, E. coli lacZ (encodes beta-galactosidase, the model antigen), and E. coli gpt (xanthine-guanine phosphoribosyltransferase, a selection gene). The effects of the recombinant viruses on lung metastases and survival were tested in animals that had been given an intravenous injection of beta-galactosidase-expressing murine colon carcinoma cells 3 days before they received the recombinant virus by intravenous inoculation. RESULTS: Expression of functional B7-1 and IL-12 by virally infected cells was demonstrated in vitro. Lung tumor nodules (i.e., metastases) were reduced in mice by more than 95% after treatment with the virus vB7/beta/IL-12; a further reduction in lung tumor nodules was observed when exogenous IL-12 was also given. Greatest survival of tumor-bearing mice was observed in those treated with viruses encoding beta-galactosidase and B7-1 plus exogenous IL-12. CONCLUSION: This study shows the feasibility of constructing vaccinia viruses that express tumor antigens and multiple immune cofactors to create unique immunologic microenvironments that can modulate immune responses to cancer.  相似文献   

10.
Hepatitis C virus (HCV) is a major human pathogen causing mild to severe liver disease worldwide. This positive strand RNA virus is remarkably efficient at establishing chronic infections. Although a high rate of genetic variability may facilitate viral escape and persistence in the face of Ag-specific immune responses, HCV may also encode proteins that facilitate evasion of immunological surveillance. To address the latter possibility, we examined the influence of specific HCV gene products on the host immune response to vaccinia virus in a murine model. Various vaccinia/HCV recombinants expressing different regions of the HCV polyprotein were used for i.p. inoculation of BALB/c mice. Surprisingly, a recombinant expressing the N-terminal half of the polyprotein (including the structural proteins, p7, NS2, and a portion of NS3; vHCV-S) led to a dose-dependent increase in mortality. Increased mortality was not observed for a recombinant expressing the majority of the nonstructural region or for a negative control virus expressing the beta-galactosidase protein. Examination of T cell responses in these mice revealed a marked suppression of vaccinia-specific CTL responses and a depressed production of IFN-gamma and IL-2. By using a series of vaccinia/HCV recombinants, we found that the HCV core protein was sufficient for immunosuppression, prolonged viremia, and increased mortality. These results suggest that the HCV core protein plays an important role in the establishment and maintenance of HCV infection by suppressing host immune responses, in particular the generation of virus-specific CTLs.  相似文献   

11.
A 59-year-old man is presented who had immunoblastic lymphadenopathy which evolved over a three-year period into immunoblastic sarcoma. His course was complicated by vaccinia necrosum, which necessitated prolonged therapy with Marboran and vaccinia-immune globulin. The persistence of virus was documented at autopsy by positive viral culture and ultra-structural examination. This case illustrates the potential hazards of administration of live viral vaccines to an immune compromised host presumed to be in remission and suggests that the continued activity of viral infection may signal the unsuspected persistence of underlying disease.  相似文献   

12.
Using a semimicromethod with washed whole blood, in vitro lymphocyte responses of rabbits to intradermal infection with vaccinia virus was studied. Peritoneal exudate macrophages were infected with vaccinia in vitro to determine the time of appearance of activated macrophages. After primary infection, an increase in spontaneous incorporation of thymidine by blood cultures was found as early as 2 days postinfection. This effect was at a maximum at 7 to 10 days, with counts up to 100-fold higher than before infection. Incubation of these cultures with concanavalin A showed a marked decrease in stimulation index as compared with normals. Although only a transient stimulation with vaccinia was found during the acute infection, stimulation indexes of 2 to 3 were obtained during convalescence. Macrophages from rabbits early after infection supported vaccinia replication, whereas those at day 6 or later resisted infection. Macrophage resistance persisted for 2 to 3 weeks. The response of lymphocytes from rabbits reinfected with vaccinia after 15 weeks differed, with a small increase in spontaneous thymidine uptake, a smaller depression in concanavalin A stimulation, and a greater specific response to vaccinia. Macrophage activation occurred earlier and persisted for a longer time after secondary infection.  相似文献   

13.
Various DNA components which were extracted with gentle cell fractionation from the HeLa cells after 4 h vaccinia virus infection were detected by dot hybridization technique. The virus DNA mainly exist in intermediate filament-lamina-nuclear matrix complex. With DGD embedment free technique and electron microscopic autoradiography, the newly synthesized virus DNA is found to be associated with intermediate filaments. The results of southwestern hybridization demonstrate that vaccinia virus DNA has specific affinity to intermediate filaments and some nuclear matrix proteins.  相似文献   

14.
Two live attenuated single-deletion mutant simian immunodeficiency virus (SIV) constructs, SIV239Deltanef and SIVPBj6.6Deltanef, were tested for their abilities to stimulate protective immunity in macaques. During the immunization period the animals were examined for specific immune responses and virus growth. Each construct generated high levels of specific immunity in all of the immunized animals. The SIV239Deltanef construct was found to grow to high levels in all immunized animals, with some animals remaining positive for virus isolation and plasma RNA throughout the immunization period. The SIVPBj6.6Deltanef was effectively controlled by all of the immunized animals, with virus mostly isolated only during the first few months following immunization and plasma RNA never detected. Following an extended period of immunization of over 80 weeks, the animals were challenged with a pathogenic simian-human immunodeficiency virus (SHIV) isolate, SIV89. 6PD, by intravenous injection. All of the SIV239Deltanef-immunized animals became infected with the SHIV isolate; two of five animals eventually controlled the challenge and three of five animals, which failed to check the immunizing virus, progressed to disease state before the unvaccinated controls. One of five animals immunized with SIVPBj6.6Deltanef totally resisted infection by the challenge virus, while three others limited its growth and the remaining animal became persistently infected and eventually died of a pulmonary thrombus. These data indicate that vaccination with attenuated SIV can protect macaques from disease and in some cases from infection by a divergent SHIV. However, if animals are unable to control the immunizing virus, potential damage that can accelerate the disease course of a pathogenic challenge virus may occur.  相似文献   

15.
Mice lacking Itk, a T-cell-specific protein tyrosine kinase, have reduced numbers of T cells and reduced responses to allogeneic major histocompatibility molecules. This study analyzed antiviral immune responses in mice deficient for Itk. Primary cytotoxic T-lymphocyte (CTL) responses were analyzed after infection with lymphocytic choriomeningitis virus (LCMV), vaccinia virus (VV), and vesicular stomatitis virus (VSV). Ex vivo CTL activity was consistently reduced by a factor of two to six for the different viruses. CTL responses after restimulation in vitro were similarly reduced unless exogenous cytokines were added. In the presence of interleukin-2 or concanavalin A supernatant, Itk-deficient and control mice responded similarly. Interestingly, while LCMV was completely eliminated by day 8 in both Itk-deficient and control mice, VV cleared from itk-/- mice with delayed kinetics. Antibody responses were evaluated after VSV infection. Both the T-cell-independent neutralizing immunoglobulin M (IgM) and the T-cell-dependent IgG responses were similar in Itk-deficient and control mice. Taken together, the results show that CTL responses are reduced in the absence of Itk whereas antiviral B-cell responses are not affected.  相似文献   

16.
Recombinant vaccinia viruses containing tumor associated genes represent an attractive vector to induce immune responses to weak immunogens in cancer immunotherapy protocols. The property of intense immunogenicity of vaccinia proteins, however, also serves to limit the number of inoculations of recombinant vaccinia viruses. Host immune responses to the first immunization have been shown to limit the replication of subsequent vaccinations and thus reduce effectiveness of boost inoculations. The use of recombinant avian pox viruses (avipox) such as the canarypox (ALVAC) or fowlpox are potential candidates for immunization protocols in that they can infect mammalian cells and express the inserted transgene, but do not replicate in mammalian cells. We report here the construction and characterization of a canarypox (ALVAC) recombinant expressing the human carcinoembryonic antigen (CEA) gene (designated ALVAC-CEA). Antibody, lymphoproliferative and cytolytic T-cell responses as well as tumor inhibition were shown to be elicited by the ALVAC-CEA recombinant in a murine model. The utilization of a diversified immunization scheme using a recombinant vaccinia virus followed by recombinant avian pox virus was shown to be far superior than the use of either one alone in eliciting CEA-specific T-cell responses. Experiments were conducted to determine if the use of a diversified immunization scheme using a recombinant vaccinia virus (rV-CEA) and ALVAC-CEA would be superior to the use of either one alone in eliciting CEA-specific T-cell responses. When mice were immunized with rV-CEA and then ALVAC-CEA. CEA-specific T-cell responses were at least four times greater, and for superior to those achieved with three immunizations of ALVAC-CEA. Multiple boosts of ALVAC-CEA following rV-CEA immunization further potentiated anti-tumor effects and CEA specific T-cell responses. These studies demonstrate the proof of concept of the advantage of diversified immunization protocols employing both recombinant vaccinia and recombinant avipox vectors.  相似文献   

17.
The chimeric simian-human immunodeficiency virus SHIVKU-1, bearing the envelope of human immunodeficiency virus type 1 (HIV-1), causes fulminant infection with subtotal loss of CD4(+) T cells followed by development of AIDS in intravaginally inoculated macaques and thus provides a highly relevant model of sexually transmitted disease caused by HIV-1 in human beings. Previous studies using this SHIV model had shown that the vpu and nef genes were important in pathogenesis of the infection, and so we deleted portions of these genes to create two vaccines, DeltavpuDeltanefSHIV-4 (vaccine 1) and DeltavpuSHIVPPc (vaccine 2). Six adult macaques were immunized subcutaneously with vaccine 1, and six were immunized orally with vaccine 2. Both viruses caused infection in all inoculated animals, but whereas vaccine 1 virus caused only a nonproductive type of infection, vaccine 2 virus replicated productively but transiently for a 6- to 10-week period. Both groups were challenged 6 to 7 months later with pathogenic SHIVKU-1 by the intravaginal route. All four unvaccinated controls developed low CD4(+) T-cell counts (<200/microliter) and AIDS. The 12 vaccinated animals all became infected with SHIVKU-1, and two in group 1 developed a persistent productive infection followed by development of AIDS in one. The other 10 have maintained almost complete control over virus replication even though spliced viral RNA was detected in lymph nodes. This suppression of virus replication correlated with robust antiviral cell-mediated immune responses. This is the first demonstration of protection against virulent SHIV administered by the intravaginal route. This study supports the concept that sexually transmitted HIV disease can be prevented by parenteral or oral immunization.  相似文献   

18.
In the adaptive immune response to most viruses, both the cellular and humoral arms of the immune system play complementary roles in eliminating virus and virus-infected cells and in promoting recovery. To evaluate the relative contribution of CD4+ and CD8+ effector T lymphocytes in virus clearance and recovery, we have examined the host response to lethal type A influenza virus infection in B lymphocyte-deficient mice with a targeted disruption in the immunoglobulin mu heavy chain. Our results indicate that naive B cell-deficient mice have a 50- 100-fold greater susceptibility to lethal type A influenza virus infection than do wild type mice. However, after priming with sublethal doses of influenza, immune B cell-deficient animals show an enhanced resistance to lethal virus infection. This finding indicates that an antibody-independent immune-mediated antiviral mechanism accounts for the increased resistance to lethal virus challenge. To assess the contribution of influenza-specific CD4+ and CD8+ effector T cells in this process, defined clonal populations of influenza-specific CD4+ and CD8+ effector T cells were adoptively transferred into lethally infected B cell-deficient mice. Cloned CD8+ effectors efficiently promoted recovery from lethal infection, whereas cloned CD4+ T cells conferred only partial protection. These results suggest that memory T lymphocytes can act independently of a humoral immune response in order to confer resistance to influenza infection in immune individuals. The potential implications of these results for vaccination against human influenza infection are discussed.  相似文献   

19.
Methods for preventing and treating Ebola virus hemorrhagic fever are not still available despite the fact that this virus have been studied for 20 years. Methods of immunization of the animals (sheep, goats) non-susceptible to Ebola virus with live virus preparations were developed to obtain the hyperimmune anti-Ebola virus sera required to have highly immune antivirus gamma-globulins. These methods made it possible to obtain the immune sera having high virus-neutralizing antibodies. Caprine immunoglobulins were obtained from sera by fractionation of immune sera by Kohn's method. The neutralization indices of the immunoglobulins obtained were at least Ig. When administered in the first hours of infection, the protective effect of these preparations was shown on guinea pigs infected with LD50 of the strain pathogenic to the animals. Preclinical trials of these immunoglobulins on laboratory animals and clinical trials on volunteers were performed. The preparation was used as a preventive agent when accidents took place at the laboratory working with Ebola virus. The similar preparation from equine sera having high neutralizing and protective properties was elaborated at the Virological Center, Microbiological Institute, Russian Ministry of Defense. Its prophylactic efficiency was also shown in infected gamadrias.  相似文献   

20.
To investigate the physiological role of IL-12 in viral infections in terms of T cell cytokine responses involved in virus-specific Ig isotype induction and in antiviral protection, immune responses elicited upon infection of IL-12-deficient mice with lymphocytic choriomeningitis virus (LCMV) or vesicular stomatitis virus (VSV) were studied. Infection of IL-12-deficient mice with LCMV induced a virus-specific type 1 cytokine response as determined by in vitro cytokine secretion patterns as well as by in vivo intracellular cytokine staining of LCMV-specific CD4+ TCR transgenic T cells that had clonally expanded in LCMV-infected IL-12-deficient recipient mice. In addition, LCMV- and VSV-specific IgG responses exhibited normal serum IgG2a/IgG1 ratios, demonstrating again virus-specific CD4+ T cell induction of type 1 phenotype in IL-12-deficient mice upon viral infection. LCMV and VSV immune mice were found to be protected against challenge immunization with recombinant vaccinia viruses expressing either the LCMV- or the VSV-derived glycoprotein, respectively. This protection is known to be mediated by T cell-secreted type 1 cytokines IFN-gamma and TNF-alpha. In contrast, IL-12-deficient mice showed impaired abilities to control infection with the facultative intracellular bacterium Listeria monocytogenes at early time points after infection. However, at later time points of infection, IL-12-deficient mice were able to clear infection. These findings may indicate that viruses are able to induce type 1 T cell responses in the absence of IL-12 as opposed to some bacterial or parasitical infections that are crucially dependent on the presence of IL-12 for the induction of type 1 immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号