共查询到20条相似文献,搜索用时 15 毫秒
1.
RL Habiby P Boepple L Nachtigall PM Sluss WF Crowley JL Jameson 《Canadian Metallurgical Quarterly》1996,98(4):1055-1062
Adrenal hypoplasia congenita (AHC) is an X-linked disorder that typically presents with adrenal insufficiency during infancy. Hypogonadotropic hypogonadism (HHG) has been identified as a component of this disorder in affected individuals who survive into childhood. Recently, AHC was shown to be caused by mutations in DAX-1, a protein that is structurally similar in its carboxyterminal region to orphan nuclear receptors. We studied two kindreds with clinical features of AHC and HHG. DAX-1 mutations were identified in both families. In the JW kindred, a single base deletion at nucleotide 1219 was accompanied by an additional base substitution that resulted in a frameshift mutation at codon 329 followed by premature termination. In the MH kindred, a GGAT duplication at codon 418 caused a frameshift that also resulted in truncation of DAX-1. Baseline luteinizing hormone (LIT), follicle-stimulating hormone (FSH), and free-alpha-subunit (FAS) levels were determined during 24 h of frequent (q10 min) venous sampling. In patient MH, baseline LH levels were low, but FAS levels were within the normal range. In contrast, in patient JW, the mean LH and FSH were within the normal range during baseline sampling, but LH secretion was erratic rather than showing typical pulses. FAS was apulsatile for much of the day, but a surge was seen over a 3-4-h period. Pulsatile gonadotropin releasing hormone (GnRH) (25 ng/kg) was administered every 2 h for 7 d to assess pituitary responsiveness to exogenous GnRH. MH did not exhibit a gonadotropin response to pulsatile GnRH. JW exhibited a normal response to the first pulse of GnRH, but there was no increase in FAS. In contrast to the priming effect of GnRH in GnRH-deficient patients with Kallmann syndrome, GnRH pulses caused minimal secretory responses of LH and no FAS responses in patient JW. The initial LH response in patient JW implies a deficiency in hypothalamic GnRH. On the other hand, the failure to respond to pulsatile GnRH is consistent with a pituitary defect in gonadotropin production. These two cases exemplify the phenotypic heterogeneity of AHC/HHG, and suggest that DAX-1 mutations impair gonadotropin production by acting at both the hypothalamic and pituitary levels. 相似文献
2.
3.
4.
X-linked congenital adrenal hypoplasia (AHC) is a rare developmental disorder of the human adrenal cortex and is caused by deletion or mutation of the DAX-1 gene, a recently discovered member of the nuclear hormone receptor superfamily. Hypogonadotropic hypogonadism is frequently associated with AHC. AHC occurs as part of a contiguous gene syndrome together with glycerol kinase deficiency (GKD) and Duchenne's muscular dystrophy. The present series, collected over the past 2 decades, includes 18 AHC boys from 16 families: 4 with AHC, GKD, and Duchenne's muscular dystrophy; 2 with AHC and GKD; and 12 with AHC (5 young adults with hypogonadotropic hypogonadism). Most of the boys presented with salt wasting and hyperpigmentation during the neonatal period. Plasma steroid determinations performed in the first weeks of life often showed confusing results, probably caused by steroids produced in the neonates' persisting fetocortex. Aldosterone deficiency usually preceded cortisol deficiency, which explains why the patients more often presented with salt-wasting rather than with hypoglycemic symptoms. An ACTH test was often necessary to detect cortisol deficiency in the very young infants. In some patients, serial testing was necessary to establish the correct diagnosis. In 4 boys studied during the first 3 months after birth, we found pubertal LH, FSH, and testosterone plasma levels indicating postnatal transient activation of the hypothalamic-pituitary-gonadal axis as in normal boys. Previous studies have shown that the DAX-1 gene is deleted in the AHC patients with a contiguous gene syndrome and is mutated in nondeletion patients. Most of the point mutations identified in AHC patients were frameshift mutations and stop mutations. In the 15 patients available for molecular analysis of the DAX-1 gene, there were large deletions in 6 patients and point mutations in another 7 patients. All of the point mutations identified in the present study resulted in a nonfunctional truncated DAX-1 protein. Two brothers with primary adrenal insufficiency and a medical history that strongly suggested AHC had no mutation in the DAX-1 gene. Thus, additional, as yet unknown genes must play a part in normal adrenal cortical development. 相似文献
5.
JW Martens M Verhoef-Post N Abelin M Ezabella SP Toledo HG Brunner AP Themmen 《Canadian Metallurgical Quarterly》1998,12(6):775-784
Leydig cell hypoplasia (LCH) is characterized by a decreased response of the Leydig cells to LH. As a result, patients with this syndrome display aberrant male development ranging from complete pseudohermaphroditism to males with micropenis but with otherwise normal sex characteristics. We have evaluated three brothers with a mild form of LCH. Analysis of their LH receptor (LHR) gene revealed a homozygous missense mutation resulting in a substitution of a lysine residue for a isoleucine residue at position 625 of the receptor. In vitro analysis of this mutant LHR, LHR(I625K), in HEK293 cells indicated that the signaling efficiency was significantly impaired, which explains the partial phenotype. We have compared this mutant LHR to two other mutant LHRs, LHR(A593P) and LHR(S616Y), identified in a complete and partial LCH patient, respectively. Although the ligand-binding affinity for all three mutant receptors was normal, the hormonal response of LHR(A593P) was completely absent and that of LHR(S616Y) and LHR(I625K) was severely impaired. Low cell surface expression explained the reduced response of LHR(S616Y), while for LHR(I625K) this diminished response was due to a combination of low cell surface expression and decreased coupling efficiency. For LHR(A593P), the absence of a reduced response resulted from both poor cell surface expression and a complete deficiency in coupling. Our experiments further show a clear correlation between the severity of the clinical phenotype of patients and overall receptor signal capacity, which is a combination of cell surface expression and coupling efficiency. 相似文献
6.
7.
8.
9.
C Donger I Denjoy M Berthet N Neyroud C Cruaud M Bennaceur G Chivoret K Schwartz P Coumel P Guicheney 《Canadian Metallurgical Quarterly》1997,96(9):2778-2781
BACKGROUND: KVLQT1, the gene encoding the alpha-subunit of a cardiac potassium channel, is the most common cause of the dominant form of long-QT syndrome (LQT1-type), the Romano-Ward syndrome (RWS). The overall phenotype of RWS is characterized by a prolonged QT interval on the ECG and cardiac ventricular arrhythmias leading to recurrent syncopes and sudden death. However, there is considerable variability in the clinical presentation, and potential severity is often difficult to evaluate. To analyze the relationship between phenotypes and underlying defects in KVLQT1, we investigated mutations in this gene in 20 RWS families originating from France. METHODS AND RESULTS: By PCR-SSCP analysis, 16 missense mutations were identified in KVLQT1, 11 of them being novel. Fifteen mutations, localized in the transmembrane domains S2-S3, S4-S5, P, and S6, were associated with a high percentage of symptomatic carriers (55 of 95, or 58%) and sudden deaths (23 of 95, or 24%). In contrast, a missense mutation, Arg555Cys, identified in the C-terminal domain in 3 families, was associated with a significantly less pronounced QT prolongation (459+/-33 ms, n=41, versus 480+/-32 ms, n=70, P=.0012), and significantly lower percentages of symptomatic carriers (7 of 44, or 16%, P<.001) and sudden deaths (2 of 44, or 5%, P<.01). Most of the cardiac events occurring in these 3 families were triggered by drugs known to affect ventricular repolarization. CONCLUSIONS: Our data show a wide KVLQT1 allelic heterogeneity among 20 families in which KVLQT1 causes RWS. We describe the first missense mutation in the C-terminal domain of KVLQT1, which is clearly associated with a fruste phenotype, which could be a favoring factor of acquired LQT syndrome. 相似文献
10.
A Japanese family with paramyotonia congenita which has a mutation in the muscle sodium channel gene
We report here a Japanese family with paramyotonia congenita. The proband was a 42-year-old woman (case 1), who noticed muscle stiffness and weakness in the cold since the age of 7 years. These symptoms were alleviated by warming. Her eldest son (case 2) also experienced similar symptoms, while her younger son and daughter were healthy. Neurological examination in case 1 revealed mild weakness in facial and neck muscles. Cold-induced muscle stiffness and weakness were present. Electromyography showed myotonic discharges, intensified by cooling or repetitive exercise. The amplitude of the compound muscle action potentials was also reduced by the repetitive exercise and cooling. Serum chemistry including potassium and CK was normal. Molecular analysis of SCN4A (exon22-24) by SSCP and nucleotide sequencing revealed a C-to-T transition at nucleotide 3,938, causing a substitution of 1313methionine of threonine in case 1. This mutation was confirmed by PCR-RFLP with a mismatched primer; the proband (case 1) and her eldest son (case 2) had a heterozygous mutation, while the other family members did not. This is the first report that a mutation in SCN4A was identified in a Japanese family with paramyotonia congenita. 相似文献
11.
12.
13.
Mutations in the skeletal muscle voltage-gated sodium channel alpha-subunit gene (SCN4A) have been associated with a spectrum of inherited nondystrophic myotonias and periodic paralyses. Most disease-associated SCN4A alleles occur in portions of the gene that encode the third and fourth repeat domains with the conspicuous absence of mutations in domain 1. Here we describe a family segregating an unusual autosomal dominant congenital myotonia associated with debilitating pain especially severe in the intercostal muscles. A novel SCN4A mutation causing the replacement of Val445 in the sixth transmembrane segment of domain 1 with methionine was discovered in all affected individuals and is the likely genetic basis for the syndrome. Myotonia was resistant to treatment; however, the most severely affected family member responded dramatically to the sodium channel blocking agent flecainide. 相似文献
14.
MA Whitney H Saito PM Jakobs RA Gibson RE Moses M Grompe 《Canadian Metallurgical Quarterly》1993,4(2):202-205
The biaxial mechanical properties of right ventricular free wall (RVFW) myocardium were studied. Tissue specimens were obtained from the sub-epicardium of potassium-arrested hearts and different stretch protocols were used to characterize the myocardium's mechanical response. To assess regional differences, we excised tissue specimens from the conus and sinus regions. The RVFW myocardium was found to be consistently anisotropic, with a greater stiffness along the preferred (or averaged) fiber direction. The anisotropy in the conus region was more pronounced than in the sinus region. A comparison with studies of left ventricle (LV) midwall myocardium revealed that, 1) the fiber direction stiffnesses are greater in the RVFW than in the LV, 2) the degree of anisotropy is greater in the RVFW than in the LV. 相似文献
15.
16.
K Clément C Vaisse N Lahlou S Cabrol V Pelloux D Cassuto M Gourmelen C Dina J Chambaz JM Lacorte A Basdevant P Bougnères Y Lebouc P Froguel B Guy-Grand 《Canadian Metallurgical Quarterly》1998,392(6674):398-401
The adipocyte-specific hormone leptin, the product of the obese (ob) gene, regulates adipose-tissue mass through hypothalamic effects on satiety and energy expenditure. Leptin acts through the leptin receptor, a single-transmembrane-domain receptor of the cytokine-receptor family. In rodents, homozygous mutations in genes encoding leptin or the leptin receptor cause early-onset morbid obesity, hyperphagia and reduced energy expenditure. These rodents also show hypercortisolaemia, alterations in glucose homeostasis, dyslipidaemia, and infertility due to hypogonadotropic hypogonadisms. In humans, leptin deficiency due to a mutation in the leptin gene is associated with early-onset obesity. Here we describe a homozygous mutation in the human leptin receptor gene that results in a truncated leptin receptor lacking both the transmembrane and the intracellular domains. In addition to their early-onset morbid obesity, patients homozygous for this mutation have no pubertal development and their secretion of growth hormone and thyrotropin is reduced. These results indicate that leptin is an important physiological regulator of several endocrine functions in humans. 相似文献
17.
N Ishii M Fujii PS Hartman M Tsuda K Yasuda N Senoo-Matsuda S Yanase D Ayusawa K Suzuki 《Canadian Metallurgical Quarterly》1998,394(6694):694-697
Much attention has focused on the aetiology of oxidative damage in cellular and organismal ageing. Especially toxic are the reactive oxygen byproducts of respiration and other biological processes. A mev-1(kn1) mutant of Caenorhabditis elegans has been found to be hypersensitive to raised oxygen concentrations. Unlike the wild type, its lifespan decreases dramatically as oxygen concentrations are increased from 1 to 60%. Strains bearing this mutation accumulate markers of ageing (such as fluorescent materials and protein carbonyls) faster than the wild type. We show here that mev-1 encodes a subunit of the enzyme succinate dehydrogenase cytochrome b, which is a component of complex II of the mitochondrial electron transport chain. We found that the ability of complex II to catalyse electron transport from succinate to ubiquinone is compromised in mev-1 animals. This may cause an indirect increase in superoxide levels, which in turn leads to oxygen hypersensitivity and premature ageing. Our results indicate that mev-1 governs the rate of ageing by modulating the cellular response to oxidative stress. 相似文献
18.
19.
JH McVey EJ Boswell O Takamiya G Tamagnini V Valente T Fidalgo M Layton EG Tuddenham 《Canadian Metallurgical Quarterly》1998,92(3):920-926
Intersubunit ion pairs are considered to be involved for maintaining a stable structure of the glutamate dehydrogenase (GDH) from hyperthermophiles. In order to demonstrate an effect of intersubunit ion pairs on the structural stability, two kinds of mutation (T138E, Thr at position 138 was replaced by Glu; E158Q, Glu at position 158 was replaced by Gln) which add and remove ion pairs, respectively, were introduced into Pk-gdhA gene encoding GDH from Pyrococcus kodakaraensis KOD1. Addition of one ion pair (Pk-GDHA-T138E) increased the optimum temperature and thermostability. In contrast, Pk-GDH-E158Q showed lower optimum temperature and less thermostability than wild type GDH. Structure analysis of GDHs was performed by circular dichroism (CD) and indicated that all recombinant enzymes (Pk-GDH, Pk-GDH-T138E, Pk-GDH-E158Q) possess different structures from that of natural GDH. Upon heat treatment (60 degrees C, 2 h), the structures of Pk-GDH and Pk-GDH-T138E were converted to another form close to the natural structure. However, no structural conversion by heat treatment was observed in Pk-GDH-E158Q. These results indicate that intersubunit ion pairs play an important role in forming thermostable structure of Pk-GDH. 相似文献