首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of vasoactive intestinal peptide (VIP) was investigated when mucosal stroking and 5-hydroxytryptamine (5-HT) were used to activate neural reflexes that stimulate chloride secretion in the guinea pig colon. Muscle-stripped segments of colon containing intact submucosal ganglia without myenteric ganglia were set up in modified flux chambers in order to record short-circuit current (Isc). Mucosal stroking with a brush for 1 s or a pulse of 5-HT (injection of 15 microliters of 100 microM 5-HT into 1.5 ml of mucosal solution) caused an increase in Isc that was reduced by the VIP antagonist, neurotensin6-11-VIP7-28, in a concentration-dependent manner. The Isc responses to mucosal stroking and a 5-HT pulse were reduced by 53% and 58%, respectively, by 2 microM neurotensin6-11-VIP7-28. The residual Isc response in the presence of neurotensin6-11-VIP7-28 was abolished by atropine. Blockade of 5-HT1P receptors on submucosal afferent neurons decreased Isc responses to stroking or a 5-HT pulse. The residual Isc response after 5-HT1P receptors were blocked was reduced by only 11-14% by neurotensin6-11-VIP7-28. In the presence of blockade of both 5-HT1P and VIP receptors, atropine abolished the Isc response to both stimuli. The observations suggest that the neural circuitry activated by stroking includes at least two independent pathways. One pathway contains VIP neurons which receive inputs directly or indirectly from 5-HT1P receptor-containing afferents. A second pathway involves muscarinic cholinergic transmission that is independent of 5-HT1P and VIP receptor activation.  相似文献   

2.
1. The 5-HT receptor involved in the effect of mucosal application of 5-HT to facilitate peristalsis was investigated in the isolated guinea pig ileum. 2. An application of 5-HT (3-100 microM) to the mucosal surface (by inclusion of 5-HT in the Krebs-Henseleit solution passing through the lumen of the ileum) caused a concentration related facilitation of peristalsis characterized by a reduction in the peristaltic threshold. 3. Peristalsis was not modified by methiothepine (0.1 microM), ritanserin (0.1 microM), ondansetron (5 microM), granisetron (1 microM) or SB 204070 (0.1 microM) administered alone to the mucosal surface. 4. The concentration-response curve to mucosally applied 5-HT was not altered by the mucosally applied 5-HT1/2 receptor antagonist methiothepine (0.1 microM), the 5-HT2 receptor antagonist ritanserin (0.1 microM) or the 5-HT4 receptor antagonist SB 204070 (0.1 microM). However, the mucosally applied 5-HT3 receptor antagonists ondansetron (5 microM) and granisetron (1 microM) shifted the response curves to mucosally applied 5-HT to the right in a parallel and surmountable manner. The pD2 values in the absence and presence of ondansetron were 5.42 +/- 0.07 and 4.12 +/- 0.10, respectively, (n = 6) and that of granisetron were 5.45 +/- 0.12 and 4.50 +/- 0.10 respectively, (n = 5). 5. Serosally applied ondansetron (5 microM) or granisetron (1 microM) had no effect on the concentration-response curve to mucosally applied 5-HT. However, the serosally applied ondansetron and granisetron antagonised the facilitatory effect of serosally applied 5-HT (10 microM) when administered in the presence of serosally applied SB 204070 (0.1 microM). 6. It is concluded that the facilitatory effect of mucosally applied 5-HT to reduce the peristaltic threshold in the guinea pig ileum is mediated via a 5-HT3 receptor located on the mucosal and not the serosal side of the ileum.  相似文献   

3.
The aim of this study was to characterize and compare the effect of atrial natriuretic peptide (ANP) on ileal transport function in two common laboratory animals, the Hooded-Lister rat and the New Zealand White rabbit. ANP 1 microM produced a maximal increase in short circuit current (Isc) that was Cl- dependent in both rat and rabbit. The maximal response in rat tissue was twice the magnitude of that seen in the rabbit. Furthermore, the rabbit Isc response was rapid and transient compared with that of the rat. In both rats and rabbits, the ANP response was dependent on extracellular Ca++. Neural blockade had no effect on the rat ANP response but significantly inhibited the ANP response in rabbits. In the rat, the effect of ANP is mediated by seratonin (5-HT) acting through 5-HT2 receptors. In contrast, no role for 5-HT could be seen in the rabbit ileal ANP response. In intact tissue in both rat and rabbit, ANP stimulated a significant rise in cGMP levels. ANP had no effect on cAMP levels in either species. The findings suggest a separate and distinct mechanism for ANP-mediated intestinal Cl- secretion in the rat ileum compared with the rabbit.  相似文献   

4.
We investigated the effects of ramosetron (YM060, (-)-(R)-5-[(1-methyl-1H-indol-3-yl)carbonyl]-4,5,6,7-tetrahydro-1 H-benzimidazole monohydrochloride) on the short-circuit current (Isc) responses to 5-HT receptor agonists in the rat distal colon, and compared its potency to that of other 5-HT3 receptor antagonists. 5-Hydroxytryptamine (5-HT) concentration-dependently increased Isc. The Isc response to 5-HT was partially reduced by tetrodotoxin and ramosetron, and strongly inhibited by GR113808 ([[1-[(2-methyl-sulphonyl) amino]ethyl]-4-piperidin-yl]methyl 1-methyl-1 H-indole-3-carboxylate). 2-Methyl-5-HT and 5-methoxytryptamine also increased Isc. The former response was inhibited by ramosetron, and the latter was abolished by GR113808. Ramosetron, YM114 (KAE-393, (-)-(R)-5-[(1-indolinyl)carbonyl]-4,5,6,7-tetrahydro-1 H-benzimidazole monohydrochloride) and granisetron concentration-dependently antagonized the Isc responses to 2-methyl-5-HT with reduction in the maximal response at higher concentrations. Apparent pA2 values for these antagonists were 10.40, 10.37 and 8.99, respectively. Ondansetron produced clear rightward shifts of the concentration-response curves to 2-methyl-5-HT, with a pA2 value of 8.53. These results suggest that 5-HT increases Isc through the 5-HT3 and 5-HT4 receptors, and that ramosetron is a potent and selective 5-HT3 receptor antagonist in rat colonic mucosa.  相似文献   

5.
Oxidative stress has been known to play important roles in various inflammatory diseases of lung such as allergic bronchitis, dust particle-induced inflammatory diseases, or chronic bronchitis. However, the effects of oxidants on Cl- secretion in tracheal epithelia have not been determined. To examine the effects of oxidants on Cl- secretion of the airway epithelia rat tracheal epithelial cells were cultured on porous filters and short circuit current (Isc) was measured in an Ussing chamber system. t-Butylhydroperoxide, which was widely used as a model substance to study the mechanism of cell injury resulted from oxidative stress, induced a transient increase in Isc by dose-dependent manner. The response was not observed in Cl(-)-free medium, and inhibited by 100 microM bumetanide. N(-Diphenyl-1,4-phenylene-diamine (DPPD, 5 microM), an inhibitor of lipid peroxidation, blocked the t-butylhydroperoxide response. When t-butylhydroperoxide was added after the administration of forskolin or H-89, a protein kinase A inhibitor, the t-butylhydroperoxide-induce Isc increase was abolished. Pretreatment of indomethacin (10 microM) completely inhibited the t-butylhydroperoxide response, but pretreatment of thapsigargin (1 microM) did not, t-Butylhydroperoxide induced gradual increases in cytosolic Ca2+ level, and increased [3H]arachidonic acid release in the presence of thapsigargin. These results indicate that t-butylhydroperoxide stimulates Cl-secretion via activation of phospholipase A2 and subsequent production of cyclooxygenase metabolities by Ca(2+)-dependent and -independent mechanisms.  相似文献   

6.
The ionic channels and signal transduction pathways underlying the 5-hydroxytryptamine (5-HT)-induced hyperpolarization in neurons of the rat dorsolateral septal nucleus (DLSN) were examined by using intracellular and voltage-clamp recording techniques. Application of 5-HT (1-50 microM) caused a hyperpolarizing response associated with a decreased membrane resistance in DLSN neurons. The hyperpolarization induced by 5-HT was blocked by Ba2+ (1 mM) but not by tetraethylammonium (TEA, 3 mM), glibenclamide (100 microM) and extracellular Cs+ (2 mM). 8-Hydroxy-di-n-propylamino tetralin (8-OH-DPAT; 3 microM), a selective agonist for the 5-HT1A receptor, mimicked 5-HT in producing the hyperpolarization. The 5-HT hyperpolarization was blocked by NAN-190 (5 microM), a 5-HT1A receptor antagonist. CP93129 (100 microM), a 5-HT1B receptor agonist, and L-694-247 (100 microM), a 5-HT1B/1D receptor agonist, also produced hyperpolarizing responses. The order of agonist potency was 8-OH-DPAT > CP93129 > or = L-694-247. (+/-)-2,5-Dimethoxy-4-iodoamphetamine hydrochloride (DOI, 100 microM), a 5-HT2 receptor agonist, and RS67333 (100 microM), a 5-HT4 receptor agonist, caused no hyperpolarizing response. The voltage-clamp study showed that 5-HT caused an outward current (I5-HT) in a concentration-dependent manner. I5-HT was associated with an increased membrane conductance. I5-HT reversed the polarity at the equilibrium potential for K+ calculated by the Nernst equation. I5-HT showed inward rectification at membrane potentials more negative than-70 mV. Ba2+ (100 microM) blocked the inward rectifier K+ current induced by 5-HT. I5-HT was irreversibly depressed by intracellular application of guanosine 5'-O-(3-thiotriphosphate)(GTP-gamma S) but not by guanosine 5'-O-(2-thiodiphosphate) (GDP beta S). These results suggest that in rat DLSN neurons activation of 5-HT1A receptors causes a hyperpolarizing response by activating mainly the inward rectifier K+ channels through a GTP-binding protein.  相似文献   

7.
The present study characterized the rat colonic secretory response to 5-hydroxytryptamine (5-HT) and determined alterations in this response following stress. 5-HT stimulated rat colonic short-circuit current in a concentration-dependent fashion (pD2 = 5.19). This response was subject to desensitization and was mimicked by the indolealkylamines with a rank order potency of 5-HT approximately alpha-methyl-5-HT > 5-carboxytryptamine approximately 5-methoxytryptamine. 2-Methyl-5-HT was a partial agonist. The colonic response to 5-HT was unaltered by methysergide (10 microM), ritanserin (0.1 microM), ondansetron (1 microM) or clozapine (10 microM), but was antagonized by the 5-HT4 receptor antagonists SB204070 (pD'2 = 9.32), GR113808 (pKb = 8.56), DAU6285 (pKb = 6.07) and SDZ205557 (pKb = 6.80). The response of colonic epithelial and oesophageal tunica muscularis mucosae to 5-HT is therefore mediated by a similar 5-HT4 receptor. Following wrap restraint stress, the colonic response to 5-HT became bimodal. Half of the preparations were hyper-responsive, while the rest were hypo-responsive to 5-HT. This 5-HT4 receptor may therefore be involved in stress related changes in fluid transport.  相似文献   

8.
Effects of indeloxazine hydrochloride, an inhibitor of serotonin (5-HT) and norepinephrine (NE) reuptake with a facilitatory effect on 5-HT release, on acetylcholine (ACh) output in frontal cortex of conscious rats were characterized using an in vivo microdialysis technique. Systemic administration of indeloxazine (3 and 10 mg/kg, i.p.) increased ACh and 5-HT output in a dose-dependent manner. Depletion of endogenous monoamines by reserpine and of 5-HT by p-chlorophenylalanine, but not that of catecholamines by alpha-methyl-p-tyrosine, significantly attenuated the facilitatory effect of indeloxazine on ACh release. When applied locally by reverse dialysis, indeloxazine (10 and 30 microM) and the selective 5-HT reuptake inhibitor citalopram (10 microM), but not the NE reuptake inhibitor maprotiline (30 microM), increased cortical ACh output. Indeloxazine (10 mg/kg)-induced increase in ACh release was significantly inhibited by local application of the 5-HT4 receptor antagonists RS23597 (50 microM) and GR113803 (1 microM), while the 5-HT1A antagonist WAY-100135 (100 microM), 5-HT1A/1B/beta-adrenoceptor antagonist (-)propranolol (150 microM), 5-HT2A/2C antagonist ritanserin (10 microM) and 5-HT3 antagonist ondansetron (10 microM) failed to significantly modify this effect. Neither depletion of monoamines nor treatment with serotonergic antagonists significantly changed the basal ACh level, indicating that endogenous monoamines do not tonically activate ACh release. These results suggest that indeloxazine-induced facilitation of ACh release in rat frontal cortex is mediated by endogenous 5-HT and involves at least in part cortical 5-HT4 receptors.  相似文献   

9.
In vivo microdialysis was used to investigate the mechanism behind the increase in extracellular dopamine (DA) induced by increase in extracellular serotonin (5-HT) level and 5-HT1 and 5-HT2 receptor activation. The following serotoninergic drugs were perfused in the absence or presence of nomifensine (5 microM) or tetrodotoxin (TTX; 2 microM): clomipramine (10, 500 and 1,000 microM), a selective 5-HT reuptake inhibitor; 8-OH-DPAT (50 and 500 microM), a 5-HT1A receptor agonist; and alpha-methyl-5-HT (1, 5 and 50 microM), a 5-HT2 receptor agonist. All the serotoninergic drugs studied increased DA extracellular output in a dose-dependent manner. The presence of nomifensine attenuated the effect of perfusion of clomipramine (500 microM) and completely abolished the effect of perfusion of 8-OH-DPAT (500 microM) and alpha-methyl-5-HT (5 microM) on DA extracellular output. Clomipramine (100-1,000 microM) perfusion produced a dose dependent increase in DOPAC extracellular output, which was stronger when clomipramine (500 microM) was co-perfused with nomifensine. 8-OH-DPAT and alpha-methyl-5-HT perfusion decreased DOPAC overflow. Addition of TTX to the perfusion fluid one hour before serotoninergic drugs perfusion, did not completely abolish the effect on dopamine extracellular output produced by the serotoninergic drugs. These data seem to indicate that increase in extracellular 5-HT level and 5-HT1 and 5-HT2 receptor activation increase in vivo DA extracellular output in the striatum mainly by a nonexocytotic mechanism involving DA uptake sites and, secondarily, by activation of 5-HT receptors.  相似文献   

10.
Fast cyclic voltammetry (FCV) was used to measure electrically stimulated monoamine efflux in the rat ventral lateral geniculate nucleus (vLGN). The electrochemical characteristics of the released species resembled 5-HT but not dopamine or noradrenaline. Amine efflux was abolished by the sodium channel blocker tetrodotoxin (0.1 microM), Ro 4-1284 (1.0 microM), the fast-acting reserpine analogue, and removal of Ca2+ from the superfusate. Amine efflux was unaffected by the monoamine oxidase inhibitor clorgyline (0.1 microM). Of paroxetine (0.1 microM), desipramine (50 nM) and vanoxerine (0.5 microM), selective blockers of 5-HT, noradrenaline and dopamine uptake respectively, only paroxetine increased monoamine efflux (to 194 +/- 25%, mean +/- SEM) and prolonged the removal half-life (to 638 +/- 105%). The non-specific 5-HT1 antagonist methiothepin (0.2 microM) increased 5-HT efflux on long (20 pulses at 20 Hz) but not short trains (20 pulses at 100 Hz). When tested on pseudo-one-pulse stimulations (5 pulses, 100 Hz), the selective 5-HT1A agonist 8-OHDPAT (1.0 microM) had no effect. CP 93129 (0.3 microM), the selective 5-HT1B agonist, decreased 5-HT efflux to 37 +/- 4% of control and was antagonised by the 5-HT1B blocker isamoltane (0.5 microM) and by the 5-HT1D/B antagonist GR 127935 (50 nM). The preferential 5-HT1D agonist sumatriptan (0.5 microM) also decreased 5-HT efflux, to 55 +/- 6% and was antagonised by GR 127935 (50 nM) but not isamoltane (0.5 microM). These results suggest that 5-HT released in the vLGN can be measured by FCV. Furthermore, released 5-HT is taken up by the 5-HT transporter and may be under the influence of 5-HT1B and 5-HT1D autoreceptors.  相似文献   

11.
The functional regulation by serotonin (5-HT) receptors of the 5-HT-enhanced dopamine (DA) release from the rat substantia nigra (SN) was investigated using in vivo microdialysis. Exogenously administered or extracellularly enhanced 5-HT (by means of intranigral citalopram perfusion) (both 1 microM for 1 h) significantly increased nigral DA efflux to 165% and 145%, respectively. Intranigral administration of pindolol (10 microM, 3 h), a 5-HT1A/1B receptor antagonist which is clinically used in order to block 5-HT1A/1B autoreceptors, did not affect DA levels but significantly increased nigral 5-HT levels to 135%. Co-perfusion of this antagonist with 5-HT (1 microM, 1 h) did not abolish the 5-HT-induced DA release from the SN as DA was increased to 166%. Local application of the 5-HT1A/1B receptor agonist, CP 93129 (1 microM, 1 h), increased DA release from the SN to 4770% whereas 5-HT release was significantly decreased to 75%. Co-perfusion of the 5-HT1A/1B receptor antagonist, pindolol, with this agonist only partly abolished the CP 93129-induced DA release whereas the CP 93129-induced decrease in nigral 5-HT release was completely abolished. Administration of the 5-HT2A/2C receptor antagonist, ketanserin (50 microM, 3 h), significantly increased DA to 143% and 5-HT release to 363%. Co-perfusion of this antagonist with 5-HT still caused an increase in nigral DA release to 214%. Intranigral perfusion of the 5-HT4 receptor antagonist, RS 39604 (10 microM, 3 h), did not affect DA levels but significantly decreased nigral 5-HT levels to 74%. Co-perfusion of this antagonist with 5-HT was able to prevent the 5-HT-enhanced DA efflux from the SN. From this study it can be concluded that the 5-HT-enhanced (and possibly the citalopram-induced) nigral DA release is 5-HT4 receptor mediated.  相似文献   

12.
The petrosal ganglion supplies chemoafferent pathways via the glossopharyngeal (IXth) nerve to peripheral targets which release various neurotransmitters including serotonin (5-HT). Here, we combined rapid 5-HT application with patch clamp, whole-cell recording to investigate whether 5-HT receptors are expressed on isolated petrosal neurons (PN), cultured from 7-12 day-old rat pups. In responsive cells, the dominant effect of 5-HT was a rapid depolarization associated with a conductance increase in approximately 43% of the neurons (53/123); however, in a minority population ( approximately 6%; 8/123), 5-HT caused membrane depolarization associated with a conductance decrease. In the former group, 5-HT produced a transient inward current (I5-HT) in neurons voltage-clamped near the resting potential ( approximately -60 mV); the effect was mimicked by the 5-HT3 receptor-specific agonist, 2-methyl-5-HT, suggesting it was mediated by 5-HT3 receptors. Further, I5-HT was selectively inhibited by the 5-HT3 receptor-specific antagonist MDL72222 (1-10 microM), but was unaffected by either 5-HT1/5-HT2 receptor antagonist, spiperone, or by 5-HT2 receptor-specific antagonist, ketanserin (50-100 microM). I5-HT displayed moderate inward rectification and had a mean reversal potential (+/-S.E.M.) of -4.3+/-6.6 mV (n=6). Application of 5-HT (dose range: 0.1-100 microM) produced a dose-response curve that was fitted by the Hill equation with EC50= approximately 3.4 microM and Hill coefficient= approximately 1.6 (n=8). The activation phase of I5-HT (10 microM 5-HT at -60 mV) was well fitted by a single exponential with mean (+/-S.E.M.) time constant of 45+/-30 ms (n=6). The desensitization phase of I5-HT was best fitted by a single exponential with mean (+/-S.E.M.) time constant of 660+/-167 ms (n=6). Fluctuation analysis yielded an apparent mean single-channel conductance (+/-S.E.M) of 2.7+/-1.5 pS (n=4) at -60 mV. In the minority ( approximately 6%) population of neurons which responded to 5-HT with a conductance decrease, the depolarization was blocked by the 5-HT2 receptor antagonist, ketanserin (50 microM). Taken together, these results suggest that 5-HT3 receptors are the major subtype expressed by rat petrosal neurons, and therefore are candidates for facilitating chemoafferent excitation in response to 5-HT released from peripheral targets.  相似文献   

13.
We investigated the effect of 8-hydroxy-2-(N,N-dipropylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, on the induction of long-term potentiation in rat visual cortex slices. Perfusion of 8-OH-DPAT (0.1-10 microM) did not affect layer II/III field potentials evoked by test stimulation of layer IV, but significantly reduced long-term potentiation induced by tetanic stimulation. The inhibitory effect of 8-OH-DPAT was blocked by the 5-HT1A receptor antagonist, pindolol (10 microM), but not by the 5-HT2,7 receptor antagonist, ritanserin (100 microM), nor by the 5-HT3,4 receptor antagonist, MDL72222 (100 microM). These results suggest that the rat visual cortex long-term potentiation is inhibited by 5-HT1A receptor stimulation.  相似文献   

14.
In intact tissue, DAGO ([D-Ala2, MePhe4, Gly-ol5]enkephalin; 10(-5) M; mu-ligand; addition on the serosal side) stimulated D-glucose absorption and D-glucose-dependent variations in short-circuit current (delta Isc,glu); naloxone (10(-6) M) antagonized these effects. DADLE ([D-Ala2, D-Leu5]enkephalin, mainly a delta-ligand; 10(-5) M) and (pCl-Phe4)-DPDPE ([D-pen2, p-chloro-Phe4, D-Pen5]enkephalin, a more selective delta-ligand; 10(-5) M) did not significantly stimulate delta Isc,glu (addition on the serosal side). In the absence of the muscularis and myenteric plexus or using intact tissue treated with tetrodotoxin (TTX; 3 x 10(-7) M), DAGO was unable to increase delta Isc,glu. Addition of DAGO to the mucosal side did not induce any variations in delta Isc,glu. In conclusion, DAGO is able to increase D-glucose absorption by interacting with mu-receptors located in the myenteric plexus.  相似文献   

15.
The possible involvement of nitric oxide in the regulation of intestinal ion transport induced by neuropeptide Y (NPY) was investigated by evaluating the effects of NG-methyl-L-arginine (L-NMA), L-arginine and S-nitroso-N-acetylpenicillamine (SNAP) on NPY activity in mouse ileum mounted in Ussing chambers in vitro. Serosal NPY (10 nM) produced a sustained decrease in basal transmural short circuit current (Isc) and potential difference without altering the tissue conductance. Pretreatment of tissues with L-arginine (3 mM), but not D-arginine (10 mM), blocked the NPY-mediated changes in Isc. This L-arginine effect on NPY activity was reversed by L-NMA (3 mM), and not by NG-methyl-D-arginine (10 mM). The L-arginine effect on NPY activity was concentration-related with an A50 (95% CL) value of 1.6 (0.9-2.3) mM. In contrast to L-arginine, L-NMA (1 mM) pretreatment of tissues produced an enhancement of NPY activity, resulting in a 3.8-fold leftward displacement of the NPY concentration-response curve; NG-methyl-D-arginine was without effect. The effect of L-NMA on NPY activity was concentration-related with an A50 (95% CL) value of 45.3 (23.2-68.8) microM. Serosal application of SNAP, a nitric oxide donor, produced a concentration-related decrease in basal Isc and potential difference without altering tissue conductance with an A50 (95% CL) value of 22.5 (11.1-40.5) microM. Pretreatment of tissue with SNAP (100 microM) reduced the NPY activity with rightward displacement of NPY concentration-response curve. Pretreatment of tissues with L-arginine also blocked the reduction of Isc by [D-Pen2, D-Pen5]enkephalin (10-30 nM), H2N-Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2 (10-30 nM) and somatostatin (0.3-1.0 microM), but had no effect on norepinephrine (0.1-0.3 microM)-induced decrease in mouse ileal Isc. These results show that [fgc]l-arginine and SNAP block NPY-mediated changes in ion transport, suggesting that nitric oxide may play a role in the regulation of NPY-mediated ion transport in the mouse ileum.  相似文献   

16.
1. Modulation by 5-hydroxytryptamine receptor agonists of the NMDA responses of ventral spinal cord neurones was studied by use of the whole-cell patch-clamp technique. 2. In a Mg-free solution containing tetrodotoxin and glycine, 5-hydroxytryptamine (5-HT, 10-100 microM) reduced the NMDA response, the block increasing with hyperpolarization. Kainate responses were little affected. 3. Some classical agonists of 5-HT receptors induced similar blocking effects. At 10 microM, both a selective agonist of 5-HT2 receptors, (+/-)-2,5-dimethoxy-4 iodo amphetamine (DOI), and a selective agonist of some 5-HT1 receptors, (+/-)-8-hydroxy-2(n-dipropyl amino) tetralin (8-OH-DPAT), induced pronounced blocking effects, of 48% and 33% respectively at -100 mV, whereas another 5-HT1 agonist, 5-carboxamidotryptamine (5-CT) was ineffective. At 100 microM, 5-methoxytryptamine (5-MeOT) induced a complete block of the NMDA responses recorded at -100 mV. The order of potency was: 5-MeOT congruent to DOI > 8-OH-DPAT > 5-HT > 5-CT. 4. Neither spiperone nor ketanserin (1 microM) prevented the blocking effect of 5-HT or DOI. 5. Prolonged preincubations with 5-HT did not block the response if NMDA was applied without 5-HT. When 5-HT agonists were applied both by preincubation and with NMDA, the degree of block increased during the NMDA application. 6. Lowering the NMDA concentration (from 100 to 20 microM) slightly decreased the blocking effect of 5-MeOT. 7. External Mg2+ ions (1 mM) also reduced the blocking effects of 5-HT and 5-MeOT. 8. The blocking effects described appear to be independent of classical 5-HT receptors. Their voltage-dependence suggests a mechanism of open channel block consistent with all the results obtained.  相似文献   

17.
The effects of trazodone on the cyclic GMP elevation elicited by N-methyl-D-aspartate in rat cerebellar slices were analyzed. Trazodone inhibited in a concentration-dependent manner (EC50 = 0.82 nM) the cyclic GMP response evoked by 0.1 microM N-methyl-D-aspartate. The inhibition was near complete at 10 nM trazodone. The effect of 10 nM trazodone was unaffected by 0.3 microM spiperone or rauwolscine, antagonists with selectivity for the 5-HT(serotonin)2A or the 5-HT2B subtype, respectively, but it was totally prevented by 0.01 microM mesulergine, a 5-HT2A/5-HT2B/5-HT2C receptor antagonist. Trazodone was potently counteracted (IC50 = 2.7 nM) by the selective 5-HT2B/5-HT2C receptor antagonist N-(1-methyl-5-indolyl)-N-(3-pyridil) urea HCl and, less potently (IC50 = 95 nM), by ketanserin, a 5-HT2A/5-HT2C receptor blocker. It is concluded that trazodone behaves as a potent full agonist at the 5-HT2C receptor mediating inhibition of the cerebellar N-methyl-D-aspartate/nitric oxide/cyclic GMP system.  相似文献   

18.
The present study has utilized the two electrode voltage-clamp technique to examine the pharmacological profile of a splice variant of the rat orthologue of the 5-hydroxytryptamine type 3A subunit (5-HT3A(b)) heterologously expressed in Xenopus laevis oocytes. At negative holding potentials, bath applied 5-HT (300 nM - 10 microM) evoked a transient, concentration-dependent (EC50 = 1.1+/-0.1 microM), inward current. The response reversed in sign at a holding potential of -2.1+/-1.6 mV. The response to 5-HT was mimicked by the 5-HT3 receptor selective agonists 2-methyl-5-HT (EC50= 4.1+/-0.2 microM), 1-phenylbiguanide (EC50=3.0+/-0.1 microM), 3-chlorophenylbiguanide (EC50 = 140+/-10 nM), 3,5-dichlorophenylbiguanide (EC50 = 14.5+/-0.4 nM) and 2,5-dichlorophenylbiguanide (EC50 = 10.2+/-0.6 nM). With the exception of 2-methyl-5-HT, all of the agonists tested elicited maximal current responses comparable to those produced by a saturating concentration (10 microM) of 5-HT. Responses evoked by 5-HT at EC50 were blocked by the 5-HT3 receptor selective antagonist ondansetron (IC50=231+/-22 pM) and by the less selective agents (+)-tubocurarine (IC50=31.9+/-0.01 nM) and cocaine (IC50 = 2.1+/-0.2 microM). The data are discussed in the context of results previously obtained with the human and mouse orthologues of the 5-HT3A subunit. Overall, the study reinforces the conclusion that species differences detected for native 5-HT3 receptors extend to, and appear largely explained by, differences in the properties of homo-oligomeric receptors formed from 5-HT3A subunit orthologues.  相似文献   

19.
The anxiolytics buspirone (BUS), ipsapirone (IPSAP) and gepirone (GEP) were investigated as 5-HT1A receptor-mediated inhibitors of tyrosine hydroxylation (TH) in a synaptosome-rich preparation of rat striatum. BUS, IPSAP and GEP were moderately potent inhibitors of TH with EC50 values of 48.4 microM, 50 microM and 836 microM, respectively. By comparison, 8-OH-DPAT, a 5-HT1A receptor selective agonist, has been previously shown to be more potent with an EC50 value of 7.0 microM. Each of these agents demonstrated full agonist activity at the striatal 5-HT1A receptors regulating TH. The inhibitory effects of each agent were attenuated by prior exposure to the 5-HT1A antagonist NAN-190, (10 microM) (P < 0.05), but not by the dopamine D2 antagonist (-)-sulpiride (10 microM). The potencies of 8-OH-DPAT, BUS, IPSAP and GEP were correlated with their reported affinities for the 5-HT1A receptor (P < 0.01) but not the dopamine D2 receptor. These results support the hypothesis that BUS, IPSAP and GEP inhibit TH through activation of a striatal 5-HT1A heteroreceptor on dopamine nerve terminals.  相似文献   

20.
5-HT autoreceptors involved in the regulation of 5-HT release in the guinea pig dorsal raphe nucleus have been studied in comparison with those in the hypothalamus. In vitro release was measured in slices of raphe and hypothalamus prelabelled with [3H]5-HT, superfused with Krebs solution and depolarized electrically. The non-selective 5-HT receptor agonist, 5-carboxamidotryptamine (5-CT) (0.1-10 nM for raphe: 1-100 nM for hypothalamus) and antagonist, methiothepin (10-1000nM), decreased and increased, respectively, the release of [3H]5-HT evoked by electrical stimulation in either of these regions when given alone. The selective 5-HT1B/D receptor antagonist, GR127935 (100-1000 nM), and the 5-HT1D receptor antagonist, ketanserin (300-1000 nM), had no significant effect on this release in either of these regions. Methiothepin and GR127935 (100-1000 nM) shifted to the right the concentration-effect curve of 5-CT in both the raphe and the hypothalamus. At 300 nM, ketanserin shifted to the right the concentration-effect curve of 5-CT in the raphe but did not modify the 5-CT curve in the hypothalamus. In microdialysis experiments ketanserin, applied locally at 10 microM, increased the extracellular levels of 5-HT in the dorsal raphe nucleus of the freely moving guinea pig, whereas 5-HT levels were unchanged in the hypothalamus. Ketanserin at 1 microM did not affect the decrease in 5-HT output induced by the selective 5-HT1B/D receptor agonist, naratriptan (used at 10 microM in raphe and 0.1 microM in hypothalamus), in the raphe or the hypothalamus. In the raphe, WAY100635, a 5-HT1A receptor antagonist, at 1 microM, did not prevent naratriptan (10 microM) from reducing the extracellular levels of 5-HT. These results suggest that, in the conditions used in this study, the release of 5-HT in the dorsal raphe nucleus is possibly modulated in part by 5-HT1B receptors but essentially the control is through 5-HT receptors whose subtype is still to be determined. In the hypothalamus, however, it is clear that only 5-HT1B receptors are involved in the modulation of 5-HT neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号